권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Purpose: This study aims to use big data technology to predict the risk probability of hazardous chemicals logistics roads, convert the risk probability into a cost, and establish a model with the goal of cost minimization.
Research design, data, and methodology: The objective function is composed of three parts: vehicle cost, transportation cost, as well as risk cost. An optimized ant colony algorithm is proposed to solve this model and to compare the difference in cost incurred b y multi-type t ransportation and s ingle-type t ransportation. During the experiment, A regional hazardous chemical logistics company is an example.
Results: The results of the model solution show that the use of big data techniques to predict the risks on the logistics transportation path of hazardous chemicals, while taking into account transportation safety and logistics costs, and improving the transportation safety of hazardous chemicals, the comparison between multi-type transportation and single-type transportation highlights the advantages of multi-type transportation. The advantages are more in line with the actual operating conditions of logistics companies, and the optimized ant colony algorithm achieves better performance and convergence speed than the basic ant colony algorithm in terms of optimal solution and convergence speed.
Implications: Thus, it has certain reference value for hazardous chemical logistics companies to choose transportation solutions.*표시는 필수 입력사항입니다.
*전화번호 | ※ '-' 없이 휴대폰번호를 입력하세요 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: 정기간행물실(524호) / 서가번호: 국내08
2021년 이전 정기간행물은 온라인 신청(원문 구축 자료는 원문 이용)
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.