본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

권호기사

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 목차
C13-apocarotenoids biosynthesis with engineered microbes Jiawei Huang, Jiaying Lou, Jing Cao, Da Wu, Jiale Wang p. 601-612
Metabolic modeling of microorganisms involved in anaerobic digestion Junkyu Lee, Byung Tae Lee, Mun Su Kwon, Hyun Uk Kim p. 613-624
Y-shaped oligonucleotides : a promising platform for enhanced therapy with siRNA and CpG oligodeoxyribonucleotides In Seop Yoon, Hye Jeong Nam, Cheol Am Hong p. 625-635
Identification of genes associated with accelerated biological ageing through computational analysis : a systematic review Shreya Chandrakant Desai, A. Dannie Macrin, T. Senthilvelan, Rames C. Panda p. 636-649
High-yield β-alanine production from glucose and acetate in Escherichia coli Toan Minh Vo, Sunghoon Park p. 650-660
Development of in vitro lycopene biosynthesis from geranyl pyrophosphate employing cell-free protein synthesis Young Hwan Goh, Ye Chan Kim, Sang Hun Jeong, Sangwoo Joo, You Kyoung Kwon, Hyunseok Yoon, Seohee Jung, Taresh P. Khobragade, Pritam Giri, Seonga Lim ... [et al.] p. 661-672
Homotaurine exhibits contrasting effects of DRD1-mediated thermogenesis-related regulators in C2C12 myoblasts and 3T3−L1 white adipocytes Kiros Haddish, Jong Won Yun p. 673-688
Assessment of Damnacanthus major Siebold & Zucc callus for antioxidative and moisturizing capacities using an artificial skin alternative Byung Man Lee, Hyun Ju Woo, Bum Jun Jang, Jae Ahn Shin, Young Min Ham, Eun Bi Jang, Sung Chun Kim, Jeong Mi Kim, Hwa Sung Shin p. 689-698
Cell line-specific impact of dexamethasone on the bioprocessing of Chinese hamster ovary cells Yeong Bin An, Da Eun Kang, Jiseon Yoo, Weon-Kyoo You, Jong Youn Baik, Jong Kwang Hong p. 699-711
Effect of 4-phenylbutyrate addition timing on titer of Fc-fusion protein in Chinese hamster ovary cell cultures Jungae Lim, Jin-Hyuk Lim, Ji-Hoon Lee, Su-Hwan Cheon, Guewha Lee, Z-Hun Kim, Dong-Il Kim p. 712-720
Design and optimization of a continuous purification process using ion-exchange periodic counter-current chromatography for a low-titer enzyme Kwanyoung Ko, Min-Jung Kim, Dasom Kim, Kangyun Seo, Sangho Lee p. 721-732
Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride Long Hoang Dang Bui, Keitaro Aoki, Tomonari Tanaka, Yuji Aso p. 733-742
Efficient biodegradation of low-density polyethylene by Pseudomonas plecoglossicida SYp2123 was observed through FT-IR and FE-SEM analysis Ye-Jin Kim, Yeon-Hwa Kim, Ye-Rim Shin, Su-Yeong Choi, Jeong-Ann Park, Hyun-Ouk Kim, Kwang Suk Lim, Suk-Jin Ha p. 743-750
Memristor device based on bioengineered elastin-like polypeptide and its bionanohybrid Kyungmin Lee, Hunsang Jung, Heelak Choi, Jong In Won, Hyun Ho Lee p. 751-758
Study on the S239D/I332E mutation effect on the kinetics of Fc–Fc receptor binding through transition complex theory Petrina Jebamani, Sun-Gu Lee p. 759-768

참고문헌 (32건) : 자료제공( 네이버학술정보 )

참고문헌 목록에 대한 테이블로 번호, 참고문헌, 국회도서관 소장유무로 구성되어 있습니다.
번호 참고문헌 국회도서관 소장유무
1 Jayapal KP, Wlaschin KF, Hu WS et al (2007) Recombinant protein therapeutics from CHO cells—20 years and counting. Chem Eng Prog 103:40–47 미소장
2 Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260. https://doi.org/10.1016/j.febslet.2013.11.035 미소장
3 Tihanyi B, Nyitray L (2020) Recent advances in CHO cell line development for recombinant protein production. Drug Discov Today Technol 38:25–34. https://doi.org/10.1016/j.ddtec.2021.02.003 미소장
4 Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930. https://doi.org/10.1007/s00253-011-3758-5 미소장
5 Li F, Vijayasankaran N, Shen AY et al (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479. https://doi.org/10.4161/mabs.2.5.12720 미소장
6 Wulhfard S, Baldi L, Hacker DL et al (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J Biotechnol 148:128–132. https://doi.org/10.1016/j.jbiotec.2010.05.003 미소장
7 Fomina-Yadlin D, Mujacic M, Maggiora K et al (2015) Transcriptome analysis of a CHO cell line expressing a recombinant therapeutic protein treated with inducers of protein expression. J Biotechnol 212:106–115. https://doi.org/10.1016/j.jbiotec.2015.08.025 미소장
8 Allen MJ, Boyce JP, Trentalange MT et al (2008) Identification of novel small molecule enhancers of protein production by cultured mammalian cells. Biotechnol Bioeng 100:1193–1204. https://doi.org/10.1002/bit.21839 미소장
9 Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: a viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:182–189. https://doi.org/10.1002/bit.21882 미소장
10 Chen F, Kou T, Fan L et al (2011) The combined effect of sodium butyrate and low culture temperature on the production, sialylation, and biological activity of an antibody produced in CHO cells. Biotechnol Bioprocess Eng 16:1157–1165. https://doi.org/10.1007/s12257-011-0069-8 미소장
11 Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707. https://doi.org/10.1016/j.copbio.2009.10.008 미소장
12 Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194. https://doi.org/10.1002/bit.21726 미소장
13 Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture: a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology 53:33–46. https://doi.org/10.1007/s10616-007-9047-6 미소장
14 Yang WC, Lu J, Nguyen NB et al (2014) Addition of valproic acid to CHO cell fed-batch cultures improves monoclonal antibody titers. Mol Biotechnol 56:421–428. https://doi.org/10.1007/s12033-013-9725-x 미소장
15 Jeon MK, Lee GM (2007) Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. J Microbiol Biotechnol 17:1036–1040 미소장
16 Kim NS, Lee GM (2000) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193. https://doi.org/10.1002/1097-0290(2000)71:3%3c184::aid-bit1008%3e3.0.co;2-w 미소장
17 Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109–115. https://doi.org/10.1379/1466-1268(1996)001%3c0109:iomacc%3e2.3.co;2 미소장
18 de Almeida SF, Picarote G, Fleming JV et al (2007) Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation. J Biol Chem 282:27905–27912. https://doi.org/10.1074/jbc.M702672200 미소장
19 Kubota K, Niinuma Y, Kaneko M et al (2006) Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem 97:1259–1268. https://doi.org/10.1111/j.1471-4159.2006.03782.x 미소장
20 Lim JH, Cha HM, Han HJ et al (2019) Evaluating the impact of suramin additive on CHO cells producing Fc-fusion protein. Biotechnol Lett 41:1255–1263. https://doi.org/10.1007/s10529-019-02728-9 미소장
21 Lim JH, Kim J, Cha HM et al (2022) Establishment of a glycoengineered CHO cell line for enhancing antennary structure and sialylation of CTLA4-Ig. Enzyme Microb Technol 157:110007. https://doi.org/10.1016/j.enzmictec.2022.110007 미소장
22 Park JH, Noh SM, Woo JR et al (2016) Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J 11:487–496. https://doi.org/10.1002/biot.201500327 미소장
23 O’Flaherty R, Bergin A, Flampouri E et al (2020) Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnol Adv 43:107552. https://doi.org/10.1016/j.biotechadv.2020.107552 미소장
24 Mimura Y, Lund J, Church S et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216. https://doi.org/10.1016/s0022-1759(00)00308-2 미소장
25 Coronel J, Klausing S, Heinrich C et al (2016) Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations. Biochem Eng J 114:101–109. https://doi.org/10.1016/j.bej.2016.06.031 미소장
26 Strotbek M, Florin L, Koenitzer J et al (2013) Stable microRNA expression enhances therapeutic antibody productivity of Chinese hamster ovary cells. Metab Eng 20:157–166. https://doi.org/10.1016/j.ymben.2013.10.005 미소장
27 Baek E, Kim CL, Kim MG et al (2016) Chemical inhibition of autophagy: examining its potential to increase the specific productivity of recombinant CHO cell lines. Biotechnol Bioeng 113:1953–1961. https://doi.org/10.1002/bit.25962 미소장
28 Li WF, Fan ZL, Wang XY et al (2022) Combination of sodium butyrate and decitabine promotes transgene expression in CHO cells via apoptosis inhibition. N Biotechnol 69:8–17. https://doi.org/10.1016/j.nbt.2022.02.004 미소장
29 Kouraklis G, Theocharis S (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol Rep 15:489–494 미소장
30 Lea MA, Randolph VM (1998) Induction of reporter gene expression by inhibitors of histone deacetylase. Anticancer Res 18:2717–2722 미소장
31 Kim HD, Jang CY, Choe JM et al (2012) Phenylbutyric acid induces the cellular senescence through an Akt/p21(WAF1) signaling pathway. Biochem Biophys Res Commun 422:213–218. https://doi.org/10.1016/j.bbrc.2012.04.086 미소장
32 Hong JK, Lee SM, Kim KY et al (2014) Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 98:5417–5425. https://doi.org/10.1007/s00253-014-5596-8 미소장