권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
표제지=0,1,1
제출문=1,2,2
보고서 초록/전호석=3,4,2
요약문=5,6,2
SUMMARY=7,8,4
CONTENTS=11,12,2
목차=13,14,2
List of Figure=15,16,8
List of Table=23,24,2
제1장 연구개발 과제의 개요=25,26,1
1. 연구배경=25,26,3
2. 연구목적=27,28,1
3. 연구 필요성 및 범위=27,28,3
4. 기대효과=29,30,2
제2장 국내외 기술개발 현황 및 개요=31,32,1
1. 국내외 기술개발=31,32,6
2. 혼합플라스틱의 재질분리 기술=36,37,13
3. 플라스틱의 개요=49,50,31
제3장 연구개발 수행내용 및 결과=80,81,1
1. 연구개발 수행내용=80,81,3
2. 이물질 제거를 위한 전처리 기술개발=83,84,25
3. 혼합플라스틱 재질분리를 위한 정전선별 기술개발=108,109,101
4. 결론=209,210,3
제4장 연구개발목표의 달성도 및 대외기여도=212,213,1
1. 연구개발목표의 달성도=212,213,1
2. 대외기여도=212,213,3
제5장 연구개발결과의 활용계획=215,216,1
1. 추가연구의 필요성=215,216,1
2. 타 연구에의 응용=216,217,1
3. 기업화 추진방향=216,217,1
제6장 연구개발과정에서 수집한 해외과학기술정보=217,218,2
제7장 참고문헌=219,220,8
특정연구개발사업 연구결과 활용계획서=227,228,2
[첨부1]연구결과 활용계획서=229,230,6
[첨부2]기술 요약서=235,236,5
영문목차
[title page etc.]=0,1,11
CONTENTS=11,12,14
Chapter 1. Outline of Research Development=25,26,1
1. Background of Research=25,26,3
2. Purpose of Research=27,28,1
3. Necessity and Contents of Research=27,28,3
4. Expectation effect=29,30,2
Chapter 2. Status and Outline on Technical Development of Domestic and Outside Country=31,32,1
1. Technical Development of Domestic and Outside Country=31,32,6
2. Material Separation Techniques of Mixed Plastics=36,37,13
3. Outline of Plastic=49,50,31
Chapter 3. Contents and Results of Research Development=80,81,1
1. Contents of Research Development=80,81,3
2. Development of Pre-treatments Technology for Removal of Impurity Materials=83,84,25
3. Development of Electrostatic Technique for Materials Separation of Mixed Plastics=108,109,101
4. Results=209,210,3
Chapter 4. Achievement of Research Purpose & Contribution=212,213,1
1. Achievement of Research Purpose=212,213,1
2. Contribution=212,213,3
Chapter 5. Utilization Plan of Research Results=215,216,1
1. Necessity of Addition Research=215,216,1
2. Application to Another Research=216,217,1
3. Plan Direction for Business=216,217,1
Chapter 6. Science Technological Information Collected from Outside countries during Research Development=217,218,2
Chapter 7. References=219,220,8
Appendix. Practical Use plan of Research Results=227,228,13
Fig. 1 Hydraulic separation of Mixed Plastics developed in U.S.A=33,34,1
Fig. 2 Principle and photo of Color Sorting=33,34,1
Fig. 3 Optical Equipments designed by Duals System=34,35,1
Fig. 4 Schematic flowsheet of TLT plastic separation technology=34,35,1
Fig. 5 Air Table and Wind Separation developed in Japan=35,36,1
Fig. 6 Schematic View of Zig Zag and Air Gravity Separators=37,38,1
Fig. 7 Flowsheet of Heavy-Liquid Separation for Five Plastic=38,39,1
Fig. 8 Contact angle between bubble and particle=39,40,1
Fig. 9 Principle of Froth Flotation for Separation of Mixed Plastic=39,40,1
Fig. 10 Variation of Contact Angle of Four Plastics by Sodium Lignosulfonate=40,41,1
Fig. 11 Schematic View of Froth Flotation for separation of HIPS and ABS=40,41,1
Fig. 12 wave length of Near Infrared Spectroscopy on Various Plastics=41,42,1
Fig. 13 Principle and Kinds of Electrostatic Separation=42,43,1
Fig. 14 Range of Thermal Adhesion Temperature of Various Plastics=44,45,1
Fig. I5 Schematic View of Thermal Adhesion Separator=44,45,1
Fig. 16 Schematic of pyrolysis process=45,46,1
Fig. 17 Pyrolysis conversion products=45,46,1
Fig. 18 Schematic of a Gasification Process=47,48,1
Fig. 19 Gasification Conversion Products=47,48,1
Fig. 20 Life Cycle Assessment of Plastics=68,69,1
Fig. 21 Recycling Methods of Waste Plastic=68,69,1
Fig. 22 Pretreatment Process and Material Recycling of Waste Plastic=69,70,1
Fig. 23 Flowsheet of Gasification used Waste Plastic=71,72,1
Fig. 24 Manufacturing process of Coke by Waste Plastic=72,73,1
Fig. 25 Manufacturing Process of RDF by Waste Plastic=73,74,1
Fig. 26 Management policy for recycling waste plastic=79,80,1
Fig. 27 Density of Various Plastics=83,84,1
Fig. 28 Photo of Plastic and Non-Metal Samples used Zig Zag Classifier Tests=84,85,1
Fig. 29 Photo and Schematic View of Zig Zag Classifier used for Rejection of Glass and Sand Materials from Plastic=85,86,1
Fig. 30 The Effect of Air Rate on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=86,87,1
Fig. 31 The Effect of Feed Rate on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=87,88,1
Fig. 32 The Effect of Mixture Ratio on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=87,88,1
Fig. 33 Relation of Grade and Recovery in Optimum Tests Conditions by Zig Zag Classifier=88,89,1
Fig. 34 Photo of Plastic and Waste Products got in Gravity Separation by Zig Zag Classifier=88,89,1
Fig. 35 Magnetic and Eddy Current Separator for Removal of Magnetic and Non-Mag. Materials from Plastic=89,90,1
Fig. 36 The Effect of Magnetic Height on Plastic Recovery and Steel Removal in Magnetic Separation=90,91,1
Fig. 37 Magnetic Intensity by Distance of Magnetic Separator from Conveyor Belt=91,92,1
Fig. 38 The Effect of Feed Rate on Plastic Recovery and Steel Removal in Magnetic Separation=91,92,1
Fig. 39 The Effect of Steel/Plastic on Plastic Recovery and Steel Removal in Magnetic Separation=92,93,1
Fig. 40 Relation of Plastic Recovery and Steel Removal in Magnetic Separation=93,94,1
Fig. 41 Photo of Plastic and Mag. Products got by Magnetic Separation=93,94,1
Fig. 42 The Effect of Particle Size on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation.=94,95,1
Fig. 43 The Effect of Drum Speed on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=95,96,1
Fig. 44 The Effect of Feed Rate on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=96,97,1
Fig. 45 The Effect of Splitter Position on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=97,98,1
Fig. 46 Photo of Plastic and Nonferrous Metals producted by Eddy Current electrostatic Separation=97,98,1
Fig. 47 Sample Chipped for removal of Fine Copper from Plastic=98,99,1
Fig. 48 Schematic View of a Induction Electrostatic Separator developed in This Study=99,100,1
Fig. 49 Photo of a Induction Electrostatic Separator developed in This Study=99,100,1
Fig. 50 The Effect of Potential Difference(kV) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=100,101,1
Fig. 51 The Effect of Electrode(+,-) Distance(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=101,102,1
Fig. 52 The Effect of Splitter Position(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=102,103,1
Fig. 53 The Effect of Interval of Splitter & Negative Electrode(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=103,104,1
Fig. 54 The Effect of Feed Rate(g/min.) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=104,105,1
Fig. 55 The Effect of Electrode Ratio(-,+) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=105,106,1
Fig. 56 The Effect of Positive Electrode Materials on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=105,106,1
Fig. 57 Photo of Positive Electrode manufactured by Stainless and Copper Materials=106,107,1
Fig. 58 Photo of Plate Type Copper and Plastic Products separated by Induction Electrostatic Separation=106,107,1
Fig. 59 Photo of needle Type Copper and Plastic Products separated by Induction Electrostatic Separation=107,108,1
Fig. 60 Principle of Corona,Induction and Triboelectrostatic Separation=112,113,1
Fig. 61 Principle of Corona Electrostatic Separation=113,114,1
Fig. 62 Principle of Induction Electrostatic Separation=113,114,1
Fig. 63 Principle of Triboelectrostatic Separation=113,114,1
Fig. 64 Charging Principle of two particles by collision=114,115,1
Fig. 65 Schematic Representation of Triboelectrostatic Separation=115,116,1
Fig. 66 Factors effecting on Charging Characteristics and Separation Efficiency on Triboelectrostatic Separation=115,116,1
Fig. 67 Equipments developed for Triboelectrostatic Separation=116,117,1
Fig. 68 Charging Equipments of Particle for Triboelectrostatlc Separation.=117,118,1
Fig. 69 Energy Level of Electron=118,119,1
Fig. 70 Energy Level and Barrier=119,120,1
Fig. 71 Deriving method of work function=119,120,1
Fig. 72 Work function of Various Materials=120,121,1
Fig. 73 Moving Characteristic of Charged Particles in Electric Field=121,122,1
Fig. 74 Moving of Charged Particle in Electrode=122,123,1
Fig. 75 Force acting on Particle Falling in a Transverse Electric Field=123,124,1
Fig. 76 Cutting Mill for Size Reduction of Plastics=125,126,1
Fig. 77 Plastic Samples crushed as Various Size by Cutting Mill=125,126,1
Fig. 78 Plastic Sample used in Bench Scale Triboelectrostic Separation=126,127,1
Fig. 79 Plastic Sample sampled from Household and Industry=127,128,1
Fig. 80 Flowsheet of Triboelectrostatic Separation for Separation of Mixed Plastics=128,129,1
Fig. 81 Schematic representation of a bench scale TES unit employed in the present work=129,130,1
Fig. 82 Charging Mechanism of Plastic Particle by Pneumatic Method=130,131,1
Fig. 83 Front Drawing of Bench Scale Triboelectrostatic Separator developed in This Study=131,132,1
Pig. 84 Drawing of Charging Machine setted on top of Triboelectrostatic Separator=132,133,1
Fig. 85 Side Drawing of Triboelectrostatic Separator=132,133,1
Fig. 86 Photo of Bench Scale Triboelectrostatic Seperator developed in This Study=133,134,1
Fig. 87 Part Details of Triboelectrostatic Separator=134,135,1
Fig. 88 The Effect of Potential Difference on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separatior=136,137,1
Fig. 89 The Effect of Relative Humidity on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=138,139,1
Fig. 90 The Effect of Air Rate on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Seperation=138,139,1
Fig. 91 The Effect of Particle Size on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=139,140,1
Fig. 92 The Effect of Potential Difference on PET Recovery and PVC Rejection In Triboelectrostatic Separation used only Positive Electrostatic=140,141,1
Fig. 93 The Effect of Potential Difference on PET Recovery and PVC Rejection In Triboelectrostatic Separation used only Negative Electrostatic=141,142,1
Fig. 94 The Effect of Mixed Ratio of PET & PVC Materials on PET Recovery and PVC Rejection In Triboelectrostatic Separation=142,143,1
Fig. 95 Results of Repeat Tests in Optimum Conditions of Triboelectrostatic Separation=142,143,1
Fig. 96 Scene Separating of PET and PVC Plastics in Triboelectrostatic Separation=143,144,1
Fig. 97 Photo of PET and PVC Plastics separated by Triboelectrostatic Separation=143,144,1
Fig. 98 The Effect of Cleaning Numbers for recover of High Purity PET Plastic In Triboelectrostatic Separation=144,145,1
Fig. 99 Relation of PVC Contents and PET Recovery in Optimum Conditions of Triboelectrostatic Separation=145,146,1
Fig. 100 The Effect of Potential Difference on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=146,147,1
Fig. 101 The Effect of Feed Rate on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=147,148,1
Fig. 102 The Effect of Air Velocity on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=148,149,1
Fig. 103 The Effect of Mixed Ratio of ABS & PVC Materials on ABS Recovery and PVC Contents In Triboelectrostatic Separation=148,149,1
Fig. 104 The Effect of Air Velocity on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=149,150,1
Fig. 105 The Effect of Potential Difference on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=150,151,1
Fig. 106 The Effect of Air Velocity on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=150,151,1
Fig. 107 The Effect of Mixed Ratio of GPPS & PVC Materials on GPPS Recovery and PVC Contents In Triboelectrostatic Separation=151,152,1
Fig. 108 The Effect of Electrode Angle on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=152,153,1
Fig. 109 Relation of GPPS Recovery and PVC Rejection in Bench Scale Triboelectrostatic Separation=152,153,1
Fig. 110 The Effect of Potential Difference GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=153,154,1
Fig. 111 The Effect of Air Velocity on GPPS Recovery and PVC Contents In Bench Scale Triboelectrostatic Separation=154,155,1
Fig. 112 The Effect of Mixed Ratio of HDPE & PVC Materials on HDPE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=154,155,1
Fig. 113 Relation of HDPE Recovery and PVC Rejection in Bench Scale Triboelecfrostatic Separation=155,156,1
Fig. 114 The Effect of Potential Difference on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=156,157,1
Fig. 115 The Effect of Air Velocity on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=156,157,1
Fig. 116 The Effect of Mixed Ratio of COPP & PVC Materials on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=157,158,1
Fig. 117 Relation of COPP Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=157,158,1
Fig. 118 The Effect of Potential Difference on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=158,159,1
Fig. 119 The Effect of Potential Difference on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=159,160,1
Fig. 120 The Effect of Mixed Ratio of PE & PVC Materials on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=160,161,1
Fig. 121 Relation of COPP Recovery and PVC Rejection in Bench Scale Triboelectrostatic Separation=160,161,1
Fig. 122 Photo of Plastic products separated by Triboelectrostatic Separation=161,162,1
Fig. 123 Photo of Plastic Products separated by Triboelectrostatic Separation=162,163,1
Fig. l24 The Effect of Potential Difference on ABS Recovery and PE Rejection in Bench Scale Triboelectrostatic Separation=163,164,1
Fig. 125 The Effect of Potential Difference on ABS Recovery and PET Rejection in Bench Scale Triboelectrostatic Separation=164,165,1
Fig. 126 The Effect of Potential Difference on PP Recovery and PET Rejection in Bench Scale Triboelectrostatic Separation=165,166,1
Fig. 127 The Effect of Potential Difference on PS Recovery and PE Rejection in Bench Scale Triboelectrostatic Separation=165,166,1
Fig. 128 The Effect of Relative Humidify on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=168,169,1
Fig. 129 The Effect of Air Rate on Grade & Recovery of PYC Material in Bench Scale Triboelectrostatic Separation=168,169,1
Fig. 130 The Effect of Splitter Position on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=169,170,1
Fig. 131 The Effect of Potential Difference on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=169,170,1
Fig. 132 The Effect of Mixed Ratio of PVC & Rubber Materials on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=170,171,1
Fig. 133 The Effect of Particle Size on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=171,172,1
Fig. 134 Relation on Grade and Recovery of PVC Material as Variation of Passing times in Bench Scale Triboelectrostatic Separation=172,173,1
Fig. 135 Photo of Final Products got by Triboelectrostatic Separation=172,173,1
Fig. 136 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & ABS=173,174,1
Fig. 137 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,HIPS & ABS=174,175,1
Fig. 138 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PET,POM & LDPE=174,175,1
Fig. 139 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & Homo-PP=175,176,1
Fig. 140 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,HIPS & COPP=175,176,1
Fig. 141 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & HDPE=176,177,1
Fig. 142 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PET,POM & PMMA=176,177,1
Fig. 143 Photo of Plastic products separated by Triboelectrostatic Separation=180,181,1
Fig. 144 Photo of Plastic products separated by Triboelectrostatic Separation=181,182,1
Fig. 145 Comparison of Tribochargers designed by Pneumatic and Mechanic Methods for charging of Plastics Particle=183,184,1
Fig. 146 Tribochargers designed by Pneumatic and Mechanic Methods for charging of Plastics Particle=183,184,1
Fig. 147 Schematic View developing in This Study=184,185,1
Fig. 148 Comparison of Separation Efficiency by Various Electrode in Triboelectrostatic Separation=185,186,1
Fig. 149 Five Electrode designed in This Study=186,187,1
Fig. 150 Setting Method of Electrode for increasing Separation Efficiency In Triboelectrostatic Separation=186,187,1
Fig. 151 Comparison of a Coated Electrode and a Non-Coated Electrode on Separation Efficiency=187,188,1
Fig. 152 Coated Electrode and Non-Coated Electrode developed in This Study=187,188,1
Fig. 153 The Effect of Film Setting in Electrode on ABS Recovery and PVC Contents in Triboelectrostatic Separation=188,189,1
Fig. 154 Only Electrode & Electrode Covered by Film developed in This Study=188,189,1
Fig. 155 Drawing on Front View of Scale-Wp Triboelectrostatic Separator=189,190,1
Fig. 156 Drawing on Electrode Position of Scale-Up Triboelectrostatic Separator=190,191,1
Fig. 157 Drawing on Sample Feed Position of Scale-Up Triboelectrostatic Seperator=190,191,1
Fig. 158 Photo of Scale-Up Triboelectrostatic Separator manufactured in This Study=191,192,1
Fig. 159 Each Parts of Scale-Up Triboelectrostatic Separator manufactured in This Study=191,192,1
Fig. 160 Schematic View of Triboelectrostatic Separator having a kinds of Charger=192,193,1
Fig. 161 The Effect of Potential Difference on Recovery & Grade of PET Plastic in Scale-Up Triboelectrostatic Separation=193,194,1
Fig. 162 Relation of PVC Contents and PET Recovery In Variation Tests of PET & PVC Mixed Ratio using Scale-Up Triboelectrostatic Separator=194,195,1
Fig. 163 Flowsheet of Triboelectrostatic Separation for Material Separation of Five Waste Plastic=196,197,1
Fig. 164 Combination Flowsheet of Gravity & Triboelectrostatic Separation for Material Separation of Five Waste Plastic=196,197,1
Fig. 165 Flowsheet of Triboelectrostatic Separation for Material Separation of Mixed Waste Plastic after Removal of Metal=197,198,1
Fig. 166 Deriving method of work function from Charging Value=198,199,1
Fig. 167 Faraday Cage for Measurement of Charging Value=199,200,1
Fig. 168 Faraday Cage and Electrometer in This Study=199,200,1
Fig. 169 Charging Value of Various Plastic measured by Faraday Cage=200,201,1
Fig. 170 Charging Value of Various Plastic measured by Faraday Cage=200,201,1
Fig. 171 Deriving work functions of Various Plastic Sample A=202,203,1
Fig. 172 Deriving work functions of Various Plastic Sample B=202,203,1
Fig. 173 Relationship Between Charging Amount and Separation Efficiency=203,204,1
Fig. 174 Schematic Diagram of Particle Movement in Electric Field=204,205,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.