본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

표제지=0,1,1

제출문=1,2,2

보고서 초록/전호석=3,4,2

요약문=5,6,2

SUMMARY=7,8,4

CONTENTS=11,12,2

목차=13,14,2

List of Figure=15,16,8

List of Table=23,24,2

제1장 연구개발 과제의 개요=25,26,1

1. 연구배경=25,26,3

2. 연구목적=27,28,1

3. 연구 필요성 및 범위=27,28,3

4. 기대효과=29,30,2

제2장 국내외 기술개발 현황 및 개요=31,32,1

1. 국내외 기술개발=31,32,6

2. 혼합플라스틱의 재질분리 기술=36,37,13

3. 플라스틱의 개요=49,50,31

제3장 연구개발 수행내용 및 결과=80,81,1

1. 연구개발 수행내용=80,81,3

2. 이물질 제거를 위한 전처리 기술개발=83,84,25

3. 혼합플라스틱 재질분리를 위한 정전선별 기술개발=108,109,101

4. 결론=209,210,3

제4장 연구개발목표의 달성도 및 대외기여도=212,213,1

1. 연구개발목표의 달성도=212,213,1

2. 대외기여도=212,213,3

제5장 연구개발결과의 활용계획=215,216,1

1. 추가연구의 필요성=215,216,1

2. 타 연구에의 응용=216,217,1

3. 기업화 추진방향=216,217,1

제6장 연구개발과정에서 수집한 해외과학기술정보=217,218,2

제7장 참고문헌=219,220,8

특정연구개발사업 연구결과 활용계획서=227,228,2

[첨부1]연구결과 활용계획서=229,230,6

[첨부2]기술 요약서=235,236,5

영문목차

[title page etc.]=0,1,11

CONTENTS=11,12,14

Chapter 1. Outline of Research Development=25,26,1

1. Background of Research=25,26,3

2. Purpose of Research=27,28,1

3. Necessity and Contents of Research=27,28,3

4. Expectation effect=29,30,2

Chapter 2. Status and Outline on Technical Development of Domestic and Outside Country=31,32,1

1. Technical Development of Domestic and Outside Country=31,32,6

2. Material Separation Techniques of Mixed Plastics=36,37,13

3. Outline of Plastic=49,50,31

Chapter 3. Contents and Results of Research Development=80,81,1

1. Contents of Research Development=80,81,3

2. Development of Pre-treatments Technology for Removal of Impurity Materials=83,84,25

3. Development of Electrostatic Technique for Materials Separation of Mixed Plastics=108,109,101

4. Results=209,210,3

Chapter 4. Achievement of Research Purpose & Contribution=212,213,1

1. Achievement of Research Purpose=212,213,1

2. Contribution=212,213,3

Chapter 5. Utilization Plan of Research Results=215,216,1

1. Necessity of Addition Research=215,216,1

2. Application to Another Research=216,217,1

3. Plan Direction for Business=216,217,1

Chapter 6. Science Technological Information Collected from Outside countries during Research Development=217,218,2

Chapter 7. References=219,220,8

Appendix. Practical Use plan of Research Results=227,228,13

그림목차

Fig. 1 Hydraulic separation of Mixed Plastics developed in U.S.A=33,34,1

Fig. 2 Principle and photo of Color Sorting=33,34,1

Fig. 3 Optical Equipments designed by Duals System=34,35,1

Fig. 4 Schematic flowsheet of TLT plastic separation technology=34,35,1

Fig. 5 Air Table and Wind Separation developed in Japan=35,36,1

Fig. 6 Schematic View of Zig Zag and Air Gravity Separators=37,38,1

Fig. 7 Flowsheet of Heavy-Liquid Separation for Five Plastic=38,39,1

Fig. 8 Contact angle between bubble and particle=39,40,1

Fig. 9 Principle of Froth Flotation for Separation of Mixed Plastic=39,40,1

Fig. 10 Variation of Contact Angle of Four Plastics by Sodium Lignosulfonate=40,41,1

Fig. 11 Schematic View of Froth Flotation for separation of HIPS and ABS=40,41,1

Fig. 12 wave length of Near Infrared Spectroscopy on Various Plastics=41,42,1

Fig. 13 Principle and Kinds of Electrostatic Separation=42,43,1

Fig. 14 Range of Thermal Adhesion Temperature of Various Plastics=44,45,1

Fig. I5 Schematic View of Thermal Adhesion Separator=44,45,1

Fig. 16 Schematic of pyrolysis process=45,46,1

Fig. 17 Pyrolysis conversion products=45,46,1

Fig. 18 Schematic of a Gasification Process=47,48,1

Fig. 19 Gasification Conversion Products=47,48,1

Fig. 20 Life Cycle Assessment of Plastics=68,69,1

Fig. 21 Recycling Methods of Waste Plastic=68,69,1

Fig. 22 Pretreatment Process and Material Recycling of Waste Plastic=69,70,1

Fig. 23 Flowsheet of Gasification used Waste Plastic=71,72,1

Fig. 24 Manufacturing process of Coke by Waste Plastic=72,73,1

Fig. 25 Manufacturing Process of RDF by Waste Plastic=73,74,1

Fig. 26 Management policy for recycling waste plastic=79,80,1

Fig. 27 Density of Various Plastics=83,84,1

Fig. 28 Photo of Plastic and Non-Metal Samples used Zig Zag Classifier Tests=84,85,1

Fig. 29 Photo and Schematic View of Zig Zag Classifier used for Rejection of Glass and Sand Materials from Plastic=85,86,1

Fig. 30 The Effect of Air Rate on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=86,87,1

Fig. 31 The Effect of Feed Rate on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=87,88,1

Fig. 32 The Effect of Mixture Ratio on Grade & Recovery of Plastic in Gravity Separation using Zig Zag Classifier=87,88,1

Fig. 33 Relation of Grade and Recovery in Optimum Tests Conditions by Zig Zag Classifier=88,89,1

Fig. 34 Photo of Plastic and Waste Products got in Gravity Separation by Zig Zag Classifier=88,89,1

Fig. 35 Magnetic and Eddy Current Separator for Removal of Magnetic and Non-Mag. Materials from Plastic=89,90,1

Fig. 36 The Effect of Magnetic Height on Plastic Recovery and Steel Removal in Magnetic Separation=90,91,1

Fig. 37 Magnetic Intensity by Distance of Magnetic Separator from Conveyor Belt=91,92,1

Fig. 38 The Effect of Feed Rate on Plastic Recovery and Steel Removal in Magnetic Separation=91,92,1

Fig. 39 The Effect of Steel/Plastic on Plastic Recovery and Steel Removal in Magnetic Separation=92,93,1

Fig. 40 Relation of Plastic Recovery and Steel Removal in Magnetic Separation=93,94,1

Fig. 41 Photo of Plastic and Mag. Products got by Magnetic Separation=93,94,1

Fig. 42 The Effect of Particle Size on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation.=94,95,1

Fig. 43 The Effect of Drum Speed on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=95,96,1

Fig. 44 The Effect of Feed Rate on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=96,97,1

Fig. 45 The Effect of Splitter Position on Plastic Recovery and Nonferrous metals Removal in Eddy Current Separation=97,98,1

Fig. 46 Photo of Plastic and Nonferrous Metals producted by Eddy Current electrostatic Separation=97,98,1

Fig. 47 Sample Chipped for removal of Fine Copper from Plastic=98,99,1

Fig. 48 Schematic View of a Induction Electrostatic Separator developed in This Study=99,100,1

Fig. 49 Photo of a Induction Electrostatic Separator developed in This Study=99,100,1

Fig. 50 The Effect of Potential Difference(kV) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=100,101,1

Fig. 51 The Effect of Electrode(+,-) Distance(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=101,102,1

Fig. 52 The Effect of Splitter Position(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=102,103,1

Fig. 53 The Effect of Interval of Splitter & Negative Electrode(cm) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=103,104,1

Fig. 54 The Effect of Feed Rate(g/min.) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=104,105,1

Fig. 55 The Effect of Electrode Ratio(-,+) on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=105,106,1

Fig. 56 The Effect of Positive Electrode Materials on Plastic Recovery and Copper Rejection in Induction Electrostatic Separation=105,106,1

Fig. 57 Photo of Positive Electrode manufactured by Stainless and Copper Materials=106,107,1

Fig. 58 Photo of Plate Type Copper and Plastic Products separated by Induction Electrostatic Separation=106,107,1

Fig. 59 Photo of needle Type Copper and Plastic Products separated by Induction Electrostatic Separation=107,108,1

Fig. 60 Principle of Corona,Induction and Triboelectrostatic Separation=112,113,1

Fig. 61 Principle of Corona Electrostatic Separation=113,114,1

Fig. 62 Principle of Induction Electrostatic Separation=113,114,1

Fig. 63 Principle of Triboelectrostatic Separation=113,114,1

Fig. 64 Charging Principle of two particles by collision=114,115,1

Fig. 65 Schematic Representation of Triboelectrostatic Separation=115,116,1

Fig. 66 Factors effecting on Charging Characteristics and Separation Efficiency on Triboelectrostatic Separation=115,116,1

Fig. 67 Equipments developed for Triboelectrostatic Separation=116,117,1

Fig. 68 Charging Equipments of Particle for Triboelectrostatlc Separation.=117,118,1

Fig. 69 Energy Level of Electron=118,119,1

Fig. 70 Energy Level and Barrier=119,120,1

Fig. 71 Deriving method of work function=119,120,1

Fig. 72 Work function of Various Materials=120,121,1

Fig. 73 Moving Characteristic of Charged Particles in Electric Field=121,122,1

Fig. 74 Moving of Charged Particle in Electrode=122,123,1

Fig. 75 Force acting on Particle Falling in a Transverse Electric Field=123,124,1

Fig. 76 Cutting Mill for Size Reduction of Plastics=125,126,1

Fig. 77 Plastic Samples crushed as Various Size by Cutting Mill=125,126,1

Fig. 78 Plastic Sample used in Bench Scale Triboelectrostic Separation=126,127,1

Fig. 79 Plastic Sample sampled from Household and Industry=127,128,1

Fig. 80 Flowsheet of Triboelectrostatic Separation for Separation of Mixed Plastics=128,129,1

Fig. 81 Schematic representation of a bench scale TES unit employed in the present work=129,130,1

Fig. 82 Charging Mechanism of Plastic Particle by Pneumatic Method=130,131,1

Fig. 83 Front Drawing of Bench Scale Triboelectrostatic Separator developed in This Study=131,132,1

Pig. 84 Drawing of Charging Machine setted on top of Triboelectrostatic Separator=132,133,1

Fig. 85 Side Drawing of Triboelectrostatic Separator=132,133,1

Fig. 86 Photo of Bench Scale Triboelectrostatic Seperator developed in This Study=133,134,1

Fig. 87 Part Details of Triboelectrostatic Separator=134,135,1

Fig. 88 The Effect of Potential Difference on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separatior=136,137,1

Fig. 89 The Effect of Relative Humidity on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=138,139,1

Fig. 90 The Effect of Air Rate on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Seperation=138,139,1

Fig. 91 The Effect of Particle Size on PET Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=139,140,1

Fig. 92 The Effect of Potential Difference on PET Recovery and PVC Rejection In Triboelectrostatic Separation used only Positive Electrostatic=140,141,1

Fig. 93 The Effect of Potential Difference on PET Recovery and PVC Rejection In Triboelectrostatic Separation used only Negative Electrostatic=141,142,1

Fig. 94 The Effect of Mixed Ratio of PET & PVC Materials on PET Recovery and PVC Rejection In Triboelectrostatic Separation=142,143,1

Fig. 95 Results of Repeat Tests in Optimum Conditions of Triboelectrostatic Separation=142,143,1

Fig. 96 Scene Separating of PET and PVC Plastics in Triboelectrostatic Separation=143,144,1

Fig. 97 Photo of PET and PVC Plastics separated by Triboelectrostatic Separation=143,144,1

Fig. 98 The Effect of Cleaning Numbers for recover of High Purity PET Plastic In Triboelectrostatic Separation=144,145,1

Fig. 99 Relation of PVC Contents and PET Recovery in Optimum Conditions of Triboelectrostatic Separation=145,146,1

Fig. 100 The Effect of Potential Difference on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=146,147,1

Fig. 101 The Effect of Feed Rate on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=147,148,1

Fig. 102 The Effect of Air Velocity on ABS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=148,149,1

Fig. 103 The Effect of Mixed Ratio of ABS & PVC Materials on ABS Recovery and PVC Contents In Triboelectrostatic Separation=148,149,1

Fig. 104 The Effect of Air Velocity on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=149,150,1

Fig. 105 The Effect of Potential Difference on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=150,151,1

Fig. 106 The Effect of Air Velocity on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=150,151,1

Fig. 107 The Effect of Mixed Ratio of GPPS & PVC Materials on GPPS Recovery and PVC Contents In Triboelectrostatic Separation=151,152,1

Fig. 108 The Effect of Electrode Angle on GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=152,153,1

Fig. 109 Relation of GPPS Recovery and PVC Rejection in Bench Scale Triboelectrostatic Separation=152,153,1

Fig. 110 The Effect of Potential Difference GPPS Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=153,154,1

Fig. 111 The Effect of Air Velocity on GPPS Recovery and PVC Contents In Bench Scale Triboelectrostatic Separation=154,155,1

Fig. 112 The Effect of Mixed Ratio of HDPE & PVC Materials on HDPE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=154,155,1

Fig. 113 Relation of HDPE Recovery and PVC Rejection in Bench Scale Triboelecfrostatic Separation=155,156,1

Fig. 114 The Effect of Potential Difference on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=156,157,1

Fig. 115 The Effect of Air Velocity on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=156,157,1

Fig. 116 The Effect of Mixed Ratio of COPP & PVC Materials on COPP Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=157,158,1

Fig. 117 Relation of COPP Recovery and PVC Rejection In Bench Scale Triboelectrostatic Separation=157,158,1

Fig. 118 The Effect of Potential Difference on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=158,159,1

Fig. 119 The Effect of Potential Difference on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=159,160,1

Fig. 120 The Effect of Mixed Ratio of PE & PVC Materials on PE Recovery and PVC Contents in Bench Scale Triboelectrostatic Separation=160,161,1

Fig. 121 Relation of COPP Recovery and PVC Rejection in Bench Scale Triboelectrostatic Separation=160,161,1

Fig. 122 Photo of Plastic products separated by Triboelectrostatic Separation=161,162,1

Fig. 123 Photo of Plastic Products separated by Triboelectrostatic Separation=162,163,1

Fig. l24 The Effect of Potential Difference on ABS Recovery and PE Rejection in Bench Scale Triboelectrostatic Separation=163,164,1

Fig. 125 The Effect of Potential Difference on ABS Recovery and PET Rejection in Bench Scale Triboelectrostatic Separation=164,165,1

Fig. 126 The Effect of Potential Difference on PP Recovery and PET Rejection in Bench Scale Triboelectrostatic Separation=165,166,1

Fig. 127 The Effect of Potential Difference on PS Recovery and PE Rejection in Bench Scale Triboelectrostatic Separation=165,166,1

Fig. 128 The Effect of Relative Humidify on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=168,169,1

Fig. 129 The Effect of Air Rate on Grade & Recovery of PYC Material in Bench Scale Triboelectrostatic Separation=168,169,1

Fig. 130 The Effect of Splitter Position on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=169,170,1

Fig. 131 The Effect of Potential Difference on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=169,170,1

Fig. 132 The Effect of Mixed Ratio of PVC & Rubber Materials on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=170,171,1

Fig. 133 The Effect of Particle Size on Grade & Recovery of PVC Material in Bench Scale Triboelectrostatic Separation=171,172,1

Fig. 134 Relation on Grade and Recovery of PVC Material as Variation of Passing times in Bench Scale Triboelectrostatic Separation=172,173,1

Fig. 135 Photo of Final Products got by Triboelectrostatic Separation=172,173,1

Fig. 136 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & ABS=173,174,1

Fig. 137 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,HIPS & ABS=174,175,1

Fig. 138 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PET,POM & LDPE=174,175,1

Fig. 139 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & Homo-PP=175,176,1

Fig. 140 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,HIPS & COPP=175,176,1

Fig. 141 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PVC,PET & HDPE=176,177,1

Fig. 142 Flowsheet of Triboeleectrostatic Separation to separate the Three Kinds Plastics of PET,POM & PMMA=176,177,1

Fig. 143 Photo of Plastic products separated by Triboelectrostatic Separation=180,181,1

Fig. 144 Photo of Plastic products separated by Triboelectrostatic Separation=181,182,1

Fig. 145 Comparison of Tribochargers designed by Pneumatic and Mechanic Methods for charging of Plastics Particle=183,184,1

Fig. 146 Tribochargers designed by Pneumatic and Mechanic Methods for charging of Plastics Particle=183,184,1

Fig. 147 Schematic View developing in This Study=184,185,1

Fig. 148 Comparison of Separation Efficiency by Various Electrode in Triboelectrostatic Separation=185,186,1

Fig. 149 Five Electrode designed in This Study=186,187,1

Fig. 150 Setting Method of Electrode for increasing Separation Efficiency In Triboelectrostatic Separation=186,187,1

Fig. 151 Comparison of a Coated Electrode and a Non-Coated Electrode on Separation Efficiency=187,188,1

Fig. 152 Coated Electrode and Non-Coated Electrode developed in This Study=187,188,1

Fig. 153 The Effect of Film Setting in Electrode on ABS Recovery and PVC Contents in Triboelectrostatic Separation=188,189,1

Fig. 154 Only Electrode & Electrode Covered by Film developed in This Study=188,189,1

Fig. 155 Drawing on Front View of Scale-Wp Triboelectrostatic Separator=189,190,1

Fig. 156 Drawing on Electrode Position of Scale-Up Triboelectrostatic Separator=190,191,1

Fig. 157 Drawing on Sample Feed Position of Scale-Up Triboelectrostatic Seperator=190,191,1

Fig. 158 Photo of Scale-Up Triboelectrostatic Separator manufactured in This Study=191,192,1

Fig. 159 Each Parts of Scale-Up Triboelectrostatic Separator manufactured in This Study=191,192,1

Fig. 160 Schematic View of Triboelectrostatic Separator having a kinds of Charger=192,193,1

Fig. 161 The Effect of Potential Difference on Recovery & Grade of PET Plastic in Scale-Up Triboelectrostatic Separation=193,194,1

Fig. 162 Relation of PVC Contents and PET Recovery In Variation Tests of PET & PVC Mixed Ratio using Scale-Up Triboelectrostatic Separator=194,195,1

Fig. 163 Flowsheet of Triboelectrostatic Separation for Material Separation of Five Waste Plastic=196,197,1

Fig. 164 Combination Flowsheet of Gravity & Triboelectrostatic Separation for Material Separation of Five Waste Plastic=196,197,1

Fig. 165 Flowsheet of Triboelectrostatic Separation for Material Separation of Mixed Waste Plastic after Removal of Metal=197,198,1

Fig. 166 Deriving method of work function from Charging Value=198,199,1

Fig. 167 Faraday Cage for Measurement of Charging Value=199,200,1

Fig. 168 Faraday Cage and Electrometer in This Study=199,200,1

Fig. 169 Charging Value of Various Plastic measured by Faraday Cage=200,201,1

Fig. 170 Charging Value of Various Plastic measured by Faraday Cage=200,201,1

Fig. 171 Deriving work functions of Various Plastic Sample A=202,203,1

Fig. 172 Deriving work functions of Various Plastic Sample B=202,203,1

Fig. 173 Relationship Between Charging Amount and Separation Efficiency=203,204,1

Fig. 174 Schematic Diagram of Particle Movement in Electric Field=204,205,1

표목차

Table 1. Plants for Oil Product from Waste Plastic in Domestic=32,33,1

Table 2. Softening and Melting Temperature of Various Plastics=43,44,1

Table 3. Characteristics and Usage of LDPE Plastic=51,52,1

Table 4. Characteristic and Usage of HDPE Plastic=52,53,1

Table 5. Characteristic and Usage of ABS Plastic=54,55,1

Table 6. Kinds and Usage of PS Plastic=55,56,1

Table 7. Characteristic and Usage of HOMO-PP and CO-PP Plastic=56,57,1

Table 8. Kinds and Usage of Thermosetting Plastics=57,58,1

Table 9. Kinds and Usage of Engineering Plastics=61,62,1

Table 10. Glass Transition Temperature and Physical Characteristic of Various Polymer in Room Temperature=65,66,1

Table 11. Glass Transition Temperature and Melting Temperature of Macromolecule Materials=65,66,1

Table 12. Physical and Mechanic Characteristic of Plastics=67,68,1

Table 13. Production of General Plastic Materials(2001)=74,75,1

Table 14. Exports of Plastic Materials(2001)=75,76,1

Table I5. Imports of Plastic Materials(2001)=75,76,1

Table 16. The per Capita Consumption of Plastic Material=76,77,1

Table 17. Product Amount of General Waste Plastic by Year=77,78,1

Table 18. Product Amount and Recycling of Waste Plastic=77,78,1

Table 19. A Recycling status of Waste PET Plastics=77,78,1

Table 20. Kinds and Scale of Obligation Business for Recycling of Package Plastic=78,79,1

Table 21. Objects and Contents of This Research by Years=81,82,1

Table 22. Research Flowsheet for Development of Separation Techniques=82,83,1

Table 23. Separation Techniques of Waste Plastic=109,110,1

Table 24. Kinds and Application of electrostatic separator=111,112,1

Table 25. Work functions of some materials=120,121,1

Table 26. Work Functions of Various Plastic Materials=135,136,1

Table 27. Specific Gravity of Plastics compositing Electric Wire=167,168,1

Table 28. Work function of Plastics Compositing Electric Wire=167,168,1

Table 29. Results on Triboelectrostatic Separation by varying the Air Rate=177,178,1

Table 30. Results on Triboelectrostatic Separation for Material Separation of Three Kinds Plastics=179,180,1

Table 31. Results on Variation of Mixed Ratio of PET & PVC Materials in Scale-Up Triboelectrostatic Separation=195,196,1

Table 32. Charging Value of Various Plastics measured In This Study=201,202,1

Table 33. Charging Value of Various Plastics measured in This Study=201,202,1

Table 34. Work Functions of Various Plastics measured in This Study=203,204,1

Table 35. Aim and Achievement of Research Development=213,214,1