권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
표제지=0,1,1
제출문=0,2,1
목차=i,3,2
표목차=iii,5,1
그림목차=iv,6,8
요약문=xii,14,1
SUMMARY=0,15,1
1. 연구목적=1-1,16,1
1.1 연구의 필요성=1-1,16,2
1.2 연구목표=1-2,17,3
1.3 연구내용 및 범위=1-4,19,2
2. 재가열 장치 설계 및 제작=2-1,21,1
2.1 유도가열의 특징=2-1,21,1
2.2 수평형 고주파 유도가열기의설계 및 개방=2-1,21,2
2.3 장치부의 설명=2-2,22,1
2.3.1 고주파 잔원장치의 설명=2-2,22,1
2.4 운전방법=2-2,22,1
2.4.1 운전준비=2-2,22,2
2.4.2 냉각수=2-3,23,1
2.4.3 INductor 및 소재 공급 장치 확인=2-3,23,2
2.4.4 운전방법=2-4,24,1
2.4.5 이상 유무 표시판 설명 및 조치사항=2-4,24,3
2.4.6 운전 종료후의 조치사항=2-6,26,1
2.4.7 전기관계 및 냉각수 제어=2-6,26,2
2.4.8/9 작동방법=2-7,27,2
2.5 고주파 히터 제어 및 데이터 입출력장치=2-8,28,1
2.5.1 프로그램 설명 및 사용법=2-8,28,1
2.5.2 설정=2-8,28,2
2.5.3 측정=2-9,29,1
2.5.4 I/O Check=2-9,29,2
2.5.5 측정 데이터 정리=2-10,30,1
2.6 실험에 의한 장비의 문제점 도출=2-10,30,2
2.7 실험 및 고찰=2-11,31,11
3. 다단 수평형 재가열 장비 개발=3-1,42,1
3.1 수평형 다단식 고주파 가열장치=3-1,42,6
3.2 재가열 실험 및 고찰=3-6,47,10
3.3 결론=3-15,56,1
3.4 참고문헌=3-16,57,35
4. 부품설계=4-1,92,1
4.1 부품설계용 기초실험(A356)=4-1,92,5
4.2 구조용 부품설계용 물성조사=4-6,97,4
4.3 강도해석 및 피로해석=4-9,100,1
4.3.1 재료의 기계적 성질=4-9,100,2
4.3.2 Lower arm의 강도해석 및 피로해석=4-10,101,4
4.3.3 Connector의 강도해석 및 피로해석=4-13,104,2
4.4 결론=4-15,106,1
4.5 참고문헌=4-15,106,39
5. 금형설계=5-1,145,1
5.1 필요성=5-1,145,1
5.2 상변환이용 다이캐스팅의 금형설계=5-1,145,1
5.3 상변환이용 다이캐스팅의 유동모델=5-2,146,1
5.4 주조해석=5-3,147,1
5.4.1 Low arm의 주조해석=5-3,147,3
5.4.2 Connector의 주조해석=5-5,149,3
5.5 결론=57-,151,2
5.6 참고문헌=5-8,152,21
6. 상변환 다이캐스팅 성형실험(Arm)=6-1,173,1
6.1 Arm 금형 제작=6-1,173,3
6.2 충전실험 및 사출조건의 설정=6-3,175,3
6.3 미세조직 관찰=6-5,177,4
6.4 기계적 성질=6-8,180,4
6.5 결론=6-11,183,1
6.6 참고문헌=6-11,183,36
7. 상변환 다이캐스팅 성형실험(Connector)=6-1,219,1
7.1 Connector 금형 제작=6-1,219,2
7.2 사출조건의 설정 및 성형실험=6-2,220,3
7.3 결론=6-4,222,1
7.4 참고문헌=6-4,222,10
8. 성형자동화 시스템 구축=8-1,231,1
8.1 자동화 시스템의 구성=8-1,231,2
8.2 Robot의 작동을 위한 S/W의 구성=8-2,232,10
9. 자동화 시스템에 의한 부품개발=9-1,242,1
9.1 상변환 응용 다이캐스팅 공정의 자동화=9-1,242,2
9.2 상변환 응용 다이캐스팅 자동화 시스템에 의한 부품 개발=9-2,243,1
9.2.1 부품설계=9-2,243,1
9.2.2 금형설계=9-2,243,1
9.2.3 사출조건=9-2,243,2
9.2.4 결함분석=9-3,244,2
9.2.5 미세조식=9-4,245,2
9.2.6 기계적 성질=9-5,246,1
9.2.7 기존 부품과 시조건 부품의 내구 수명 비교=9-5,246,2
9.3 결론=9-6,247,11
10. 종합결론=10-1,258,4
Fig 2.1 Schematic diagram of reheating machine for 2 Unit cell type=2-12,32,3
Fig 2.2 Horizontal reheating equipment system=2-14,34,2
Fig 2.3 Menu screen of Heater control program=2-15,35,1
Fig 2.4 The screen of reheating condition setting=2-16,36,1
Fig 2.5 The screen of auto-reheating and measurement=2-16,36,1
Fig 2.6 The Part of screen I/O Check=2-17,37,1
Fig 2.7 The part of screen data output=2-17,37,1
Fig 2.8 Positions of thermocouple to temperature measurement=2-18,38,1
Fig 2.9 Variation of power and temperature during reheating billet with length of 150mm=2-18,38,1
Fig 2.10 Temperature difference between point A and B during reheating process of A356 with length of 150mm=2-18,38,1
Fig 2.11 Variation of power and temperature during reheating billet with length of 200mm=2-19,39,1
Fig 2.12 Temperature difference between point A and B during reheating process of A356 with length of 200mm=2-19,39,1
Fig 2.13 Variation of power and temperature during reheating billet with length of 220mm=2-20,40,1
Fig 2.14 Temperature difference between point A and B during reheating process of A356 with length of 220mm=2-20,40,1
Fig 2.15 Positions to investigate a microstruature of work piece=2-20,40,1
Fig 2.16 Microstruature evolution of A357 at 3 points=2-21,41,1
Fig 2.17 solid fraction for each positions to investigate the microatructure of work piece with diameter 90mm after reheating=2-21,41,1
Fig 3.1 The description for using of the heater control program=3-17,58,3
Fig 3.2 Electronic drawing to control of input and output for variation of time and temperature=3-20,60,8
Fig 3.3 Schematic dtagram to two stage heat of semi-solid aluminum alloys=3-2,68,2
Fig 3.4 A right-side view of roller part at horizontal reheating equipment=3-28,69,1
Fig 3.5 A cross-section view of coolant system at horizontal reheating equipment=3-29,70,1
Fig 3.6 A front,right side,plane view of the basket=3-29,70,1
Fig 3.7 A front and right-side view of coil part=3-30,71,1
Fig 3.8 The photograph of horizontal reheating equipment with 4 stations=3-30,71,2
Fig 3.9 The position for observing the microstructure of billet with EMS system=3-31,72,1
Fig 3.10 The microstucture of fabricated billet by electromagnetic stirring system of horizontal continues casting(SAG material)=3-32,73,1
Fig 3.11 The flowchart for multistang heating method of horizontal reheating equipment=3-33,74,1
Fig 3.12 Input data diagram to obtain reheating conditions=3-34,75,1
Fig 3.13 The thermal couple positions to measure the temperature during reheating=3-34,75,1
Fig 3.14 Power curve profile during reheating process of A356=3-35,76,1
Fig 3.15 Temperature profile during reheating process of A356=3-35,76,1
Fig 3.16 Temperature difference between 1 and 2 during reheating process=3-35,76,1
Fig 3.17 Power curve profile during reheating process of A356=3-36,77,1
Fig 3.18 Temperature profile during reheating process of A356=3-36,77,1
Fig 3.19 Temperature difference between position 1 and 2 during reheating process=3-36,77,1
Fig 3.20 Billet position to investigate the microstructure=3-37,78,1
Fig 3.21 Microstructure in reheating process of semi-solid aluminum A356 alloy(100X)=3-37,78,2
Fig 3.22 Microstructure in reheating process of semi-solid aluminum A356 alloy(500X)=3-38,79,2
Fig 3.23 Microstructure in reheating process of semi-solid aluminum A356 alloy(100X)=3-39,80,2
Fig 3.24 Microstructure in reheating process of semi-solid aluminum A356 alloy(500X)=3-40,81,2
Fig 3.25 The comparison of mean equivalent diameter,mean roindness,solid fraction with each position of center and edge(Exp.No.11)=3-42,83,1
Fig 3.26 Power curve profile during reheating process with Exp.NO.6 and 7=3-43,84,1
Fig 3.27 Power curve profile during reheating process with Exp.NO.11 and 12=3-44,85,1
Fig 3.28 Microstructure in reheating process with Exp.No.6(d=3-89mm,1=3-220mm)=3-45,86,2
Fig 3.29 Microstructure in reheating process with Exp.No.7(d=3-89mm,1=3-220mm)=3-46,87,2
Fig 3.30 Microstructure in reheating process with Exp.No.11(d=3-89mm,1=3-220mm)=3-48,89,2
Fig 3.31 Microstructure in reheating process with Exp.No.12(d=3-89mm,1=3-220mm)=3-49,90,2
Fig 4.1 The change of injection speed according to the stroke of plunger:(a)Exp.No.1,2,3,4 and (b)Exp.No.6,7,8,5 and 10=4-17,108,1
Fig 4.2 The change of rpessure after final filling=4-18,109,1
Fig 4.3 Experimental position to investigate the microatructures=4-18,109,1
Fig 4.4 Microatructures for A356 alloy with injection velocity of 0.3m/s at the runner(Exp.No.1)=4-19,110,1
Fig 4.5 Microatructures for A356 alloy with injection velocity of 0.7m/s at the runner(Exp.No.2)=4-20,111,1
Fig 4.6 Microatructures for A356 alloy with injection velocity of 1.0m/s at the runner(Exp.No.3)=4-21,112,1
Fig 4.7 Microatructures for A356 alloy with injection velocity of 1.5m/s at the runner(Exp.No.4)=4-22,113,1
Fig 4.8 Microatructures for A356 alloy with injection velocity of 2.5m/s at the runner(Exp.No.5)=4-23,114,1
Fig 4.9 Microatructures for A356 alloy with injection velocity of 0.3m/s at the gate(Exp.No.6)=4-24,115,1
Fig 4.10 Microatructures for A356 alloy with injection velocity of 0.5m/s at the gate(Exp.No.7)=4-25,116,1
Fig 4.11 Microatructures for A356 alloy with injection velocity of 1.0m/s at the gate(Exp.No.8)=4-26,117,1
Fig 4.12 Microatructures for A356 alloy with injection velocity of 2.0m/s at the gate(Exp.No.9)=4-27,118,1
Fig 4.13 Microatructures for A356 alloy with pressure 1000bar after final filling(Exp.No.10)=4-28,119,1
Fig 4.14 Microatructures for A356 alloy with pressure 1100bar after final filling(Exp.No.11)=4-29,120,1
Fig 4.15 Microatructures for A356 alloy with pressure 1300bar after final filling(Exp.No.12)=4-30,121,1
Fig 4.16 Injection speed switching point=4-31,122,1
Fig 4.17 The change of injection speed according to the stroke of plunger:(a)Exp.No.1,2,3,4 and 9;(b)Exp.No.5,6,7,8 and 9=4-31,122,1
Fig 4.18 The change of pressure after final filling=4-32,123,1
Fig 4.19 Experimental position to investigate the microstructures=4-32,123,1
Fig 4.20 Test piece position to investigate of the mechanical properties and tensile test specimen=4-32,123,1
Fig 4.21 Microstructures for A356 alloy to the change of injection velocity with T6 heat treatment=4-33,124,2
Fig 4.22 Ultimate tenslie strength after die casting using phase transformation(T6 heat treatment):(a)Exp.No.1,2,3,4 and 9;(b)Exp.No.5,6,7,8 and 9;(c)Exp.No.10,11,6,12 and 13=4-35,126,1
Fig 4.23 Yield strength after die casting using phase transformation(T6 heat treatment):(a)Exp.No.1,2,3,4 and 9;(b)Exp.No.5,6,7,8 and 9;(c)Exp.No.10,11,6,12 and 13=4-36,127,1
Fig 4.24 Elongation after die casting using phase transformation(T6 heat treatment):(a)Exp.No.1,2,3,4 and 9;(b)Exp.No.5,6,7,8 and 9;(c)Exp.No.10,11,6,12 and 13=4-37,128,1
Fig 4.25 Microstructure of as-received extruded 2014=4-38,129,1
Fig 4.26 Temperature pofile during reheating 2014 alloy (Final reheating temperature is 622℃:reheating condition 1)=4-39,130,1
Fig 4.27 Temperature pofile during reheating 2014 alloy (Final reheating temperature is 629℃:reheating condition 2)=4-39,130,1
Fig 4.28 Comparison of temperature difference between reheating condition 1 and reheating condition 2=4-40,131,1
Fig 4.29 Experimental of position to investigate the microstructure of 2014 alloy=4-40,131,1
Fig 4.30 Microstructure to the position after reheating 2014(reheating condition 1)=4-41,132,1
Fig 4.31 Microstructure to the position after reheating 2014(reheating condition 2)=4-42,133,1
Fig 4.32 Solid fraction to the reheating condition and position(2014)=4-43,134,1
Fig 4.33 Mean diameter to the reheating condition and position=4-43,134,1
Fig 4.34 Frequency distribution of equivalent diameter(Reheating condition 1)=4-43,134,1
Fig 4.35 Frequency distribution of equivalent diameter(Reheating condition 2)=4-44,135,1
Fig 4.36 Mean roundness to the reheating condition and position=4-44,135,1
Fig 4.37 Frequency distribution of roundness(Reheating condition 1)=4-44,135,1
Fig 4.38 Frequency distribution of roundness(Reheating condition 2)=4-45,136,1
Fig 4.39 Experimental position to investigate the microstructure of 2024 alloy=4-45,136,1
Fig 4.40 Microstructure to the position after reheating 2024 alloy=4-46,137,1
Fig 4.41 Frequency distribution of equivalent diameter after reheating 2024=4-46,137,1
Fig 4.42 Frequency distribution of roundness after reheating 2024=4-46,137,1
Fig 4.43 The flowchart of strength analysis=4-47,138,1
Fig 4.44 Assembly of Lower Arm=4-47,138,1
Fig 4.45 Boundary Conditions of Lower Arm=4-48,139,1
Fig 4.46 Von Mises distribution of Model I Lower Arm=4-48,139,1
Fig 4.47 XY direction strain distribution of Model I Lower Arm=4-49,140,1
Fig 4.48 Von Mises distribution of Model II Lower Arm=4-49,140,1
Fig 4.49 XY direction strain distribution of Model II Lower Arm=4-50,141,1
Fig 4.50 Fatigue Analysis Process=4-50,141,1
Fig 4.51 Load history of Case 1=4-50,141,1
Fig 4.52 Log of life distribution of Model I Lower Arm=4-51,142,1
Fig 4.53 Log of life distribution of Model II Lower Arm=4-51,142,1
Fig 4.54 Connectir as substitute for ball joint=4-51,142,1
Fig 4.55 Assembly of connector=4-52,143,1
Fig 4.56 Boundary condition of connector=4-52,143,1
Fig 4.57 Von Mises stress distribution of connector=4-52,143,1
Fig 4.58 Strain distribution of X direction=4-52,143,1
Fig 4.59 Disolacement distribution of connection=4-53,144,1
Fig 4.60 Load history of Connector=4-53,144,1
Fig 4.61 Log of life distribution of Connector=4-53,144,1
Fig 5.1 The flowchart of die design for pfase transformation die casting=5-10,154,1
Fig 5.2 The shape of sleeve and overflow for avoiding gas inclusion:(a)sleeve;(b)overflow=5-11,155,1
Fig 5.3 Heating line design for directional solidification and thermal stability=5-11,155,1
Fig 5.4 Filling behavior comparison of Ostwald-de Waele model and Newtonianfluid model at 60,75,and 90% filled=5-12,156,1
Fig 5.5 Effect of viscosity model on gas trap and dead zone in runner=5-13,157,1
Fig 5.6 Fill tracer behavior to show avoiding oxide skin in die sleeve=5-14,158,1
Fig 5.7 The pressure distribution according to the model=5-14,158,1
Fig 5.8 The Filling time distribution according to the model=5-15,159,1
Fig 5.9 The air pressure distribution according to the model=5-16,160,1
Fig 5.10 The solidification time distribution according to the model=5-17,161,1
Fig 5.11 The Hot spot distribution according to the model=5-18,162,1
Fig 5.12 The change of solid fraction according to the solidification time=5-19,163,1
Fig 5.13 Velocity distribution at each position in ingate=5-19,163,1
Fig 5.14 The die structure of connector=5-19,163,1
Fig 5.15 The preprocessing for simulation of connector=5-20,164,1
Fig 5.16 The change of injection speed accoeding to the stroke of plunger=5-20,164,1
Fig 5.17 The filling time distribution accoeding to the model=5-21,165,1
Fig 5.18 The air pressure distribution accoeding to the model=5-22,166,1
Fig 5.19 The solidification time distribution accoeding to the model=5-23,167,1
Fig 5.20 The Hot spot distribution accoeding to the model=5-24,168,1
Fig 5.21 The temperature distribution at 50,60,70,80,90 and 100% filled state with designed gating system=5-25,169,1
Fig 5.22 Velocity distribution at each position in ingate=5-26,170,1
Fig 5.23 The temperature distribution at 71,76,81,86,91 and 95% solidification=5-27,171,1
Fig 5.24 Temperature distribution of each cycles in the die=5-28,172,1
Fig 6.1 Side view of closed die=6-13,185,1
Fig 6.2 Front view of stationary die=6-13,185,1
Fig 6.3 Front view of stationary die except for the insert core=6-14,186,1
Fig 6.4 Section view of stationary die=6-14,186,1
Fig 6.5 Front view of moving die=6-15,187,1
Fig 6.6 Front view of moving die except for the insert core=6-15,187,1
Fig 6.7 Section view of stationary die=6-16,188,1
Fig 6.8 Part drawing of slide core=6-16,188,1
Fig 6.9 Photographs of low arm die:(a) die closed:(b) stationary die:(c) moving die=6-17,189,1
Fig 6.10 840 ton die casting machine=6-17,189,1
Fig 6.11 Comparsion of filling test with simulation result=6-18,190,1
Fig 6.12 The change of injection speed according to the plunger stroke in model I:(a) sample A,B,and C:(b) sample D,E and F=6-19,191,1
Fig 6.13 The change of injection speed according to the plunger stroke in model II and III=6-19,191,1
Fig 6.14 Setting up the injection condition in 840 ton die casting machine (Model III):(a) input of injection condition:(b) Graph of relationship between stroke and plunger velocity=6-20,192,1
Fig 6.15 Comparison of setting value and measured value(Model III)=6-21,193,1
Fig 6.16 Experimental position to investigate the microstructure of lower arm=6-21,193,1
Fig 6.17 Microstructure to the position (model I sample A)=6-22,194,1
Fig 6.18 Solid fraction to the position (model I sample A)=6-22,194,1
Fig 6.19 Microstructure to the position (model I sample B)=6-23,195,1
Fig 6.20 Solid fraction to the position (model I sample B)=6-23,195,1
Fig 6.21 Microstructure to the position (model I sample C)=6-24,196,1
Fig 6.22 Solid fraction to the position (model I sample C)=6-24,196,1
Fig 6.23 Microstructure to the position (model I sample D)=6-25,197,1
Fig 6.24 Solid fraction to the position (model I sample D)=6-25,197,1
Fig 6.25 Microstructure to the position (model I sample E)=6-26,198,1
Fig 6.26 Solid fraction to the position (model I sample E)=6-26,198,1
Fig 6.27 Microstructure to the position (model I sample F)=6-27,199,1
Fig 6.28 Solid fraction to the position (model I sample F)=6-27,199,1
Fig 6.29 Microstructure to the position (model II sample A)=6-28,200,1
Fig 6.30 Solid fraction to the position (model II sample A)=6-28,200,1
Fig 6.31 Microstructure to the position (model III sample A)=6-29,201,1
Fig 6.32 Solid fraction to the position (model III sample A)=6-29,201,1
Fig 6.33 Microstructure to the position (model III sample B)=6-30,202,1
Fig 6.34 Solid fraction to the position (model III sample B)=6-30,202,1
Fig 6.35 Test piece position to investigate mechanical properties=6-31,203,1
Fig 6.36 Tensile test results of sample A in model I (Material:A356,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-32,204,1
Fig 6.37 Tensile test results of sample B in model I (Material:A356,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-33,205,1
Fig 6.38 Tensile test results of sample C in model I (Material:A356,heat treatment condition:T5 (4 Hr at 540℃ and 8 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-34,206,1
Fig 6.39 Tensile test results of sample D in model I (Material:A356,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-35,207,1
Fig 6.40 Tensile test results of sample E in model I (Material:A356,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-36,208,1
Fig 6.41 Tensile test results of sample F in model I (Material:A356,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-37,209,1
Fig 6.42 (a)Hardness of A356 alloy sample C without heat treatment (b) Hardness of A356 alloy sample A and B and A357 alloy sample D,E and F with T5 heat treatment=6-38,210,1
Fig 6.43 Tensile test results of sample A in model II (Material:A357,heat treatment condition:T5 (6 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-39,211,1
Fig 6.44 Tensile test results of sample B in model II (Material:A357,heat treatment condition:T5 (8 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-40,212,1
Fig 6.45 Tensile test results of sample C in model II (Material:A357,heat treatment condition:T5 (10 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-41,213,1
Fig 6.46 Tensile test results of sample D in model II (Material:A357,heat treatment condition:T5 (4 Hr at 525℃ and 6 Hr at 160℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-42,214,1
Fig 6.47 Tensile test results of sample E in model II (Material:A357,heat treatment condition:T5 (4 Hr at 170℃ and 6 Hr at 160℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-43,215,1
Fig 6.48 Tensile test results of sample A in model III (Material:A357,heat treatment condition:T5 (8 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-44,216,1
Fig 6.49 Tensile test results of sample B in model III (Material:A357,heat treatment condition:T5 (8 Hr at 170℃)):(a)elongation:(b)yield strength:(c)ultimate tensile strength=6-45,217,1
Fig 6.50 Appearance of lower arm by phase transformation die casting=6-46,218,1
Fig 7.1 3-D modeling of the connector:(a)top view;(b)front view;(c)isometric view=7-6,224,1
Fig 7.2 3-D modeling of the die for phase transformation die casting;(a)moving insert;(b)fixed insert;(c)moving mold base;(d)fixed mold base;(e)moving die;(f)fixed die;(g)moving plate;(h)fixed plate=7-7,225,1
Fig 7.3 3-D modeling of assembled die with three steps system=7-8,226,1
Fig 7.4 photographs of 30step die for the phase transformation die casting:(a)moving die;(b)fixed die;(c)closed die=7-8,226,1
Fig 7.5 Setting up the basic casting condition in 420 ton die casting machine=7-9,227,1
Fig 7.6 Setting uo the injection and pressurization condition in 420 ton die casting machine=7-9,227,1
Fig 7.7 Calculation value of injection condition in 420 tojn die casting machine=7-10,228,1
Fig 7.8 Injection condition in 420 ton die casting machine=7-10,228,1
Fig 7.9 Pressurization condition in 420 ton die casting machine=7-11,229,1
Fig 7.10 Process of the phase trsnsformation die casting with 3-step die system=7-12,230,1
Fig 7.11 Photographs of connector by phase transformation die casting=7-12,230,1
Fig 8.1 Layout of automatic forming system=8-9,239,1
Fig 8.2 Drawing of FANUC robot=8-9,239,1
Fig 8.3 Display of detailed information in program=8-10,240,1
Fig 8.4 Display of simplified information in program=8-10,240,1
Fig 8.5 Motion command in rpogram=8-10,240,1
Fig 8.6 Motion of robot (a)rotation motion;(b)linear motion;(c)angular motion;(d)circular motion=8-11,241,1
Fig 8.7 Photographs of automatic forming system:(a)4 unit cell horizontal reheating system;(b)Automatic transferring robot;(c)Phase transformation die casting machine=8-11,241,1
Fig 9.1 Phase transformation die casting process=9-7,248,1
Fig 9.2 3-dimensional model for a upper arm:(a)steel model(mass:2.8Kg);(b)aluminum model(mass:1.8Kg)=9-8,249,1
Fig 9.3 Photographs of moving and stationary die in the phase transformation die casting machine=9-8,249,1
Fig 9.4 The change of injection speed to the stroke displacement=9-9,250,1
Fig 9.5 Injection speed to the stroke displacement and applying pressure condition=9-9,250,1
Fig 9.6 Photographs of upper arm:(a)steel;(b)aluminum part(before machining);(c)aluminum part(after machining)=9-10,251,1
Fig 9.7 Positions for X-ray observation=9-11,252,1
Fig 9.8 X-ray observation results:(a)position(1);(b)position(2);(c)position(3);(d)position(4)(positions are marked at Fig.9.7)=9-11,252,1
Fig 9.9 Positions for microstructure observation=9-12,253,1
Fig 9.10 Microstructures at each position(X 50):(a)position ①;(b)position ②;(c)position ③;(d)position ④;(e)position ⑤;(f)position ⑥ (Positions are marked at Fig.9.9)=9-12,253,1
Fig 9.11 Microstructures at each position(X 200):(a)position ①;(b)position ③;(c)position ④;(d)position ⑥ (Positions are marked at Fig.9.9)=9-13,254,1
Fig 9.12 Solid fraction distribution=9-14,255,1
Fig 9.13 Equivalent diameter and roundness distribution=9-14,255,1
Fig 9.14 Stress-strain curve according to the position after T6 heat tratment(3 Hr at 530℃ and 8 Hr at 160℃):(a)position 1,2,3,and 4;(b)position 5,6,7,and 8=9-15,256,1
Fig 9.15 Ultimate tensile strength,yield strength and elongation according to the position=9-16,257,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.