본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

표제지=0,1,1

제출문=0,2,1

요약문=3,3,6

Summary=9,9,6

목차=15,15,3

표목차=18,18,2

그림목차=20,20,3

제1장 서론=23,23,1

제1절 연구의 배경=23,23,2

제2절 연구목표 및 내용=25,25,2

제2장 문헌고찰=27,27,1

제1절 혐기성 소화=27,27,1

1. 혐기성 소화의 개요=27,27,3

2. 혐기성 공정의 미생물학적 기작=29,29,2

가. 가수분해 및 발효단계=31,31,2

나. 유기산 생성단계=32,32,1

다. 메탄생성단계=32,32,2

3. 혐기성 소화의 전처리=34,34,1

가. 전처리의 효과=34,34,1

나. 전처리 방법의 분류 및 특징=34,34,7

4. 혐기성 소화의 주요 영향 인자=41,41,1

가. SRT(Solids Retention Time)=41,41,1

나. VOL과 HRT=41,41,2

다. 온도=43,43,1

라. pH=44,44,2

마. 영양물질=46,46,1

바. 독성물질=46,46,5

5. 혐기성 반응조의 종류=51,51,1

가. AF(Anaerobic Filter)반응조=51,51,2

나. UASB=53,53,3

다. 혼합형 반응조(Hybrid Anaerobic Reactor)=56,56,2

라. 유동상 반응조(Fluidized bed and expanded bed bioreactor)=58,58,1

마. ABR(Anaerobic Baffled Reactor)=58,58,4

바. 막결합형 혐기성 반응조=62,62,4

사. 2상소화(TPAD:Two-Phase Anaerobic Digestion)=66,66,3

제3장 메탄에너지 생상의 종합시스템을 위한 전처리와 후처리 방법=69,69,1

제1절 BMP 향상을 위한 원료의 전처리=69,69,1

1. 개요=69,69,1

2. 실험방법 및 재료=70,70,1

가. 전처리의 실험방법 및 조건=70,70,5

나. 시료의 보관과 분석방법=75,75,1

3. 실험결과 및 고찰=76,76,1

가. 기계적 전처리 실험=76,76,2

나. 화학적 전처리 실험=78,78,6

다. 생물학적 전처리 실험=84,84,6

4. 요약=90,90,1

제2절 메탄에너지 생산의 종합시스템을 위한 후처리 방법=91,91,1

1. 배출가스의 후처리 시설=91,91,1

가. 개요=91,91,3

나. 실험장치 및 실험방법=93,93,4

다. 실험결과 및 고찰=97,97,2

2. 혐기성 처리수의 후처리 방법=99,99,1

가. 개요=99,99,2

나. 실험재료 및 방법=101,101,1

다. 실험결과 및 고찰=102,102,2

3. 요약=104,104,1

제4장 축산폐수로부터 메탄에너지의 생산과 이용을 위한 종합시스템의 개발과 적용=105,105,1

제1절 종합시스템의 개발과 운전 최적화를 위한 실험실 규모의 운전=105,105,1

1. 개요=105,105,2

2. 실험장치 및 방법=106,106,8

3. 실험결과 및 고찰=114,114,1

가. 유기물 제거와 유출수의 유기물 특성=114,114,8

나. 메탄가스의 생성과 VFA의 변화=122,122,7

제2절 축산폐수로부터 메탄가스 생산을 위한 pilot plant 규모의 운전=129,129,1

1. 개요=129,129,1

2. 대상폐수의 특성=130,130,2

3. 실험장치 및 방법=132,132,5

4. 실험결과 및 고찰=137,137,11

5. 요약=148,148,1

제3절 메탄에너지 생산과 이용을 위한 실 규모시설의 초기운전=149,149,1

1. 개요=149,149,1

2. 실험장치 및 방법=150,150,6

3. 실험결과 및 고찰=156,156,1

가. 초기운전시 유기물 제거 특성=156,156,8

나. VFA의 농도변화와 메탄생성=164,164,6

4. 요약=170,170,1

제5장 결론=171,171,4

참고문헌=175,175,7

표목차

Table 2-1. Type and characteristics of the pretreatment=35,35,1

Table 2-2. Pretreatment methods for enhanced biogas generation from cellulose=40,40,1

Table 2-3. Advantages and disadvantages of mesophillic digestion over thermophillic digestion=43,43,1

Table 2-4. Stimulatory and inhibitory concentrations of light metal cations=47,47,1

Table 2-5. Antagonistic response for light metal cations and ammonia=47,47,1

Table 2-6. Typical toxicity levels for anaerobic digestion=49,49,1

Table 2-7. Relative inhibition of selected organic compounds to anaerobic processes=50,50,1

Table 2-8. Advantages associated with the anaerobic baffled reactor=60,60,1

Table 2-9. Advantages and disadvantages of two-phase anaerobic digestion=67,67,1

Table 3-1. Experimental condition of chemical pre-treatment for piggery wastewater=72,72,1

Table 3-2. Experimental condition of MAP pre-treatment for piggery wastewater=72,72,1

Table 3-3. Composition of minimal medium=74,74,1

Table 3-4. Compostion of samples in biodegradabilily test of piggery wastewater=74,74,1

Table 3-5. Experimental condition for enzyme activity test=74,74,1

Table 3-6. Concentration of raw piggery wastewater and permeate of diatomite filter=76,76,1

Table 3-7. Carbon dioxide titrated in biodegradability test of piggery wastewater=84,84,1

Table 3-8. Domestic regulation standard of the odor causing gas=92,92,1

Table 3-9. Effect of hydrogen sulfide on human health=92,92,1

Table 3-10. Biogas purification by hydrogen sulfide adsorption tower=97,97,1

Table 3-11. Batch experimental results for the effluent of anaerobic process=102,102,1

Table 4-1. Characteristics of piggery wastewater used in the lab-scale experiment=110,110,1

Table 4-2. Cation concentration of piggery wastewater used in the lab-scale experiment=111,111,1

Table 4-3. Analytical methods and instrumentation=112,112,1

Table 4-4. Fractionation of organic matter and removal efficiency=118,118,1

Table 4-5. Conversion factors for volatile fatty acids(Ince,1998)=119,119,1

Table 4-6. Biogas and methane conversion rate=126,126,1

Table 4-7. Characteristics of piggery wastewater used in this experiment=130,130,1

Table 4-8. Behavior of TCOD concentration and removal efficiency=137,137,1

Table 4-9. Characteristics of piggery wastewater used in the full-scale experiment=154,154,1

Table 4-10. Cation concentration of piggery wastewater used in the full-scale experiment=154,154,1

Table 4-11. Biogas and methane conversion rate=167,167,1

그림목차

Figure 2-1. Proposed substrate degradation pathway for the Anaerobic Digestion=30,30,1

Figure 2-2. Various pre-treatment for enhancement of BMP=35,35,1

Figure 2-3. Agitation ball mill process=37,37,1

Figure 2-4. Typical SRT ranges for various biochemical conversions in anaerobic bioreactor systems at 35℃=42,42,1

Figure 2-5. Effect of pH on the relationship between the bicarbonate alkalinity of the liquid phase and the carbon dioxide content of the gas phase in an anaerobic process=45,45,1

Figure 2-6. Schematic diagram of anaerobic filter process=52,52,1

Figure 2-7. Schematic diagram of Upflow Anaerobic Sludge Blanket bioreactor=55,55,1

Figure 2-8. Schematic diagram of hybrid UASB/AF process=57,57,1

Figure 2-9. Schematic diagram of fluidized bed and expanded bed reactor=57,57,1

Figure 2-10. Variations of the anaerobic baffled reactor=61,61,1

Figure 2-11. Schematic diagram of membrane-coupled anaerobic system=64,64,1

Figure 3-1. Photographs of diatomite filter used in the experiment=71,71,1

Figure 3-2. Removal efficiency of SS,COD and NH4+ by diatomite filter pre-treatment=77,77,1

Figure 3-3. Effect of acid pre-treatment on organic matter of piggery wastewater=79,79,1

Figure 3-4. Effect of base pre-treatment on organic matter of piggery wastewater=80,80,1

Figure 3-5. Effect of chemical pre-treatment on NH4+=81,81,1

Figure 3-6. Effect of struvite formation as a pre-treatment=83,83,1

Figure 3-7. GPC peaks of piggery wastewater after enzyme treatment=86,86,1

Figure 3-8. effect of enzyme pre-treatment on TOC of piggery wastewater=89,89,1

Figure 3-9. Photograph of biogas storage tank and hydrogen sulfide adsorption tower=94,94,1

Figure 3-10. Pilot-scale hydrogen sulfide adsorption tower=95,95,1

Figure 3-11. Variation of H₂S and ammonia concentration in the biogas=98,98,1

Figure 3-12. Typical set-up for use of biogas and effluent in China=100,100,1

Figure 3-13. Recycling of treated piggery wastewater as a liquid fertilizer=103,103,1

Figure 4-1. Schematic diagram of modified ABR with media=107,107,1

Figure 4-2. Photograph of modified ABR with media=108,108,1

Figure 4-3. Variation of VOL and HRT in the operation period=113,113,1

Figure 4-4. Variation of COD and COD removal efficiency in the reactor=116,116,1

Figure 4-5. Variation of Suspended Solids in the reactor=117,117,1

Figure 4-6. Variation of SCOD and VFA in the effluent=120,120,1

Figure 4-7. Variation of BOD and BOD removal efficiency in the reactor=121,121,1

Figure 4-8. Variation of biogas and methane production in the reactor=123,123,1

Figure 4-9. Variation of VFAs in the effluent=124,124,1

Figure 4-10. Variation of pH and Alkalinity=127,127,1

Figure 4-11. Seasonal variation of COD concentration of the piggery wastewater=131,131,1

Figure 4-12. Schematic diagram of the pilot-scale anaerobic reactors=133,133,1

Figure 4-13. Photographs of the pilot-scale anaerobic reactor=134,134,1

Figure 4-14. Variation of HRT and VOL in the pilot-scale operation=136,136,1

Figure 4-15. Variation of TCOD concentration in the pilot-scale operation=138,138,1

Figure 4-16. COD removal efficiency with VOL=139,139,1

Figure 4-17. Behavior of COD removal in the both CSTR+UASB and ABR+UASB process=141,141,1

Figure 4-18. Variation of TVFA concentration in the pilot-scale operation=142,142,1

Figure 4-19. Variation of pH in the pilot plant=143,143,1

Figure 4-20. Variation of alkalinity in the pilot plant=145,145,1

Figure 4-21. Gas composition of the produced biogas in the pilot plant=146,146,1

Figure 4-22. methane gas production in the pilot-scale operation=147,147,1

Figure 4-23. Schematic diagram of full-scale two phase anaerobic reactor=151,151,1

Figure 4-24. Photograph of full-scale two phase anaerobic reactor=152,152,1

Figure 4-25. Variation of VOL and HRT in the operation period=155,155,1

Figure 4-26. Variation of COD and OCD removal efficiency=157,157,1

Figure 4-27. Variation of SCOD,VFA and degree of acidification in the effluent of acidogenic ABR=159,159,1

Figure 4-28. Variation of SCOD,VFA and degree of acidification in the effluent of methanogenic UASB=160,160,1

Figure 4-29. Variation of Volatile Suspended Solids=162,162,1

Figure 4-30. Variation of BOD and BOD removal efficiency=163,163,1

Figure 4-31. Variation of VFAs in the effluent of acidogenic ABR=165,165,1

Figure 4-32. Variation of VFAs in the effluent of methanogenic UASB=166,166,1

Figure 4-33. Variation of biogas and methane production=168,168,1

Figure 4-34. Variation of pH and alkalinity=169,169,1