권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
표제지=0,1,1
최종보고서=0,2,1
제출문=1,3,1
요약문=2,4,5
목차=7,9,2
List of Figures=9,11,4
List of Table=13,15,1
제1장 서론=14,16,1
제1절 연구배경 및 목적=14,16,4
제2절 국내외 연구동향=17,19,3
제2장 플레이트형 흡수기의 수치 시뮬레이션=20,22,1
제1절 서론=20,22,1
제2절 플레이트 흡수기 모델 분석=20,22,1
1. 전체 플레이트 흡수기 모델=20,22,2
2. 각각의 플레이트에 대한 유하액막 모델=22,24,1
가. 모델 분석=22,24,1
나. 수치해석을 위한 가정=23,25,1
3. 지배방정식=23,25,1
가. 속도분포 방정식=23,25,3
나. 물질확산 방정식=25,27,1
4. 경계 조건=25,27,3
5. 각 단편에서의 냉매 유동 모델=27,29,2
6. 수치해석모델=28,30,4
제3절 수치해석 결과 및 고찰=32,34,1
1. 작동 조건=32,34,1
2. 모델의 타당성=32,34,3
3. 온도와 농도 분포=35,37,6
4. 질량유속과 총괄 물질전달률의 변화=41,43,2
5. 열 및 물질전달계수의 변화=43,45,2
6. 흡수 질량유속에 대한 실험조건의 영향=45,47,8
7. 플레이트 최적성 평가=53,55,7
8. 결과의 고찰=60,62,1
제4절 결론=60,62,2
제3장 실험장치 및 실험방법=62,64,1
제1절 실험장치의 구성=62,64,26
제2절 실험 방법=88,90,1
1. 흡수 실험 순서=88,90,2
2. 흡수 열교환기의 성능 평가 방법=89,91,5
제3절 실험조건 및 시스템 열평형=94,96,2
제4절 결론=96,98,1
제4장 열 및 물질전달 특성=97,99,1
제1절 흡수기내 온도분포=97,99,2
제2절 용액 유량에 따른 열 및 물질전달 특성=99,101,6
제3절 냉각수 유량에 따른 열전달 특성=105,107,6
제4절 계면활성제에 의한 열 및 물질전달 촉진=111,113,1
1. 계면활성제 농도에 따른 흡수기의 열 및 물질전달 특성=111,113,6
2. 용액유량에 따른 계면활성제의 영향=117,119,6
제5절 결론=123,125,1
제5장 20RT급 실증 시스템 성능평가=124,126,1
제1절 서론=124,126,1
제2절 20RT급 실증 실험장치=124,126,18
제3절 실험조건 및 측정방법=142,144,1
제4절 실증시험 결과 및 고찰=143,145,6
제5절 플레이트 흡수기/증발기의 컴팩트성 평가=149,151,2
제6절 결론=151,153,1
제6장 결론=152,154,2
참고문헌=154,156,4
Fig. 1.1. Load pattern of power and gas on month=15,17,1
Fig. 1.2. Capacity distribution of general absorption chiller on each part=15,17,1
Fig. 1.3. Comparison between general shell & tube and plate type=16,18,1
Fig. 2.1. Analysis model of plate absorber=21,23,1
Fig. 2.2. Schematic diagram of absorption process in water-cooled vertical plate absorber=22,24,1
Fig. 2.3. Model of refrigerant flow=27,29,1
Fig. 2.4. Model for calculation of plate absorber volume=29,31,1
Fig. 2.5. Flow chart of numerical analysis on plate absorber=31,33,1
Fig. 2.6. Comparison of boundary temperature between the existing study and this study=32,34,1
Fig. 2.7. Comparison of boundary concentration between the existing study and this study=33,35,1
Fig. 2.8. Temperature distribution on film thickness=36,38,1
Fig. 2.9. Temperature distribution on wall distance=37,39,1
Fig. 2.10. Concentration distribution on film thickness=39,41,1
Fig. 2.11. Concentration distribution on wall distance=40,42,1
Fig. 2.12. Distribution of local heat and mass flux on wall distance=42,44,1
Fig. 2.13. Distribution of total heat and mass transfer rate on wall distance=42,44,1
Fig. 2.14. Distribution of local heat and mass transfer coefficient on wall distance=44,46,1
Fig. 2.15. Influence of film Reynolds number on local mass flux=46,48,1
Fig. 2.16. Influence of film Reynolds number on total mass transfer rate=46,48,1
Fig. 2.17. Influence of cooling water temperature at inlet on local mass flux=48,50,1
Fig. 2.18. Influence of cooling water temperature at inlet on total mass transfer rate=48,50,1
Fig. 2.19. Influence of system pressure on local mass flux=49,51,1
Fig. 2.20. Influence of system pressure on total mass transfer rate=49,51,1
Fig. 2.21. Influence of solution concentration at inlet on local mass flux=51,53,1
Fig. 2.22. Influence of solution concentration at inlet on total mass transfer rate=51,53,1
Fig. 2.23. Influence of solution temperature at inlet on local mass flux=52,54,1
Fig. 2.24. Influence of solution temperature at inlet on total mass transfer rate=52,54,1
Fig. 2.25. Temperature distribution (Re=10,1RT)=54,56,1
Fig. 2.26. Concentration distribution (Re=10,1RT)=54,56,1
Fig. 2.27. Effect of the plate interval for 0.5RT/piece=56,58,1
Fig. 2.28. Effect of the plate interval for 1RT/piece=57,59,1
Fig. 2.29. Effect of the plate interval for 2RT/piece=58,60,1
Fig. 2.30. Influence of plate absorber volume on capacity for 1 piece of plate absorber=59,61,1
Fig. 3.1. Experimental apparatus=63,65,1
Fig. 3.2. Schematic diagram of experimental apparatus=64,66,1
Fig. 3.3. Experimental apparatus=65,67,1
Fig. 3.4. Schematic diagram of plate absorber=66,68,1
Fig. 3.5. Schematic diagram of plate absorber/evaporator=66,68,1
Fig. 3.6. Photograph of inner set of plate absorber/evaporator=67,69,1
Fig. 3.7. Photograph of plate absorber/evanorator=67,69,1
Fig. 3.8. Plate basic form=69,71,1
Fig. 3.9. Plate layout=70,72,1
Fig. 3.10. Heat exchanger of plate absorber=70,72,1
Fig. 3.11. Dimple plate layout=72,74,1
Fig. 3.12. Dimple plate photograph=73,75,1
Fig. 3.13. Magnification photograph of dimple plate surface=73,75,1
Fig. 3.14. Fold type plate diagram=74,76,1
Fig. 3.15. Photograph of fold type plate=75,77,1
Fig. 3.16. Form of fold type plate=75,77,1
Fig. 3.17. Sight glass of inner plate absorber/evaporator=76,78,1
Fig. 3.18. Sight glass of inner plate absorber/evaporator (large size)=76,78,1
Fig. 3.19. Eliminator=77,79,1
Fig. 3.20. Plate tray=79,81,1
Fig. 3.21. Refrigerant tank=80,82,1
Fig. 3.22. Strong concentration tank=81,83,1
Fig. 3.23. Weak concentration tank=82,84,1
Fig. 3.24. Heater of generating tank=82,84,1
Fig. 3.25. Heat Pump for Temperature of refrigerant tank=83,85,1
Fig. 3.26. Constant temperature bath=83,85,1
Fig. 3.27. K-type thermocouple=85,87,1
Fig. 3.28. Adhesion of temperature sensor=85,87,1
Fig. 3.29. Refractor=86,88,1
Fig. 3.30. Specific gravity meter=86,88,1
Fig. 3.31. Magnetic flow meter=87,89,1
Fig. 3.32. Control panel=88,90,1
Fig. 3.33. Heat balance of absorber and evaporator=91,93,1
Fig. 3.34. Heat balance of calculation model=91,93,1
Fig. 3.35. Heat balance of experimental apparatus=95,97,1
Fig. 3.36. Experimental temperature distribution of steady state=95,97,1
Fig. 4.1. Temperature distribution at inner absorber=98,100,1
Fig. 4.2. Influence of hat flux on solution flow rate=100,102,1
Fig. 4.3. Total heat transfer coefficient of plate absorber=101,103,1
Fig. 4.4. Refrigeration capacity of plate absorber=102,104,1
Fig. 4.5. Mass transfer coefficient of plate absorber=103,105,1
Fig. 4.6. Absorption mass flux of plate absorber=104,106,1
Fig. 4.7. Heat flux of plate absorber on cooling water flow rate=106,108,1
Fig. 4.8. Refrigeration capacity of plate absorber on cooling water flow rate=107,109,1
Fig. 4.9. Total heat transfer coefficient of plate absorber on cooling water flow rate=108,110,1
Fig. 4.10. Mass transfer coefficient of plate absorber on cooling water flow rate=109,111,1
Fig. 4.11. Mass flux of plate absorber on cooling water flow rate=110,112,1
Fig. 4.12. Absorption heat flux of plate absorber=112,114,1
Fig. 4.13. Overall heat transfer coefficient of plate absorber=113,115,1
Fig. 4.14. Refrigeration capacity of plate absorber=114,116,1
Fig. 4.15. Mass transfer coefficient of plate absorber=115,117,1
Fig. 4.16. Mass flux of plate absorber=116,118,1
Fig. 4.17. Absorption heat flux of dimple type plate absorber on solution flow rate=118,120,1
Fig. 4.18. Overall heat transfer coefficient dimple type plate absorber on solution flow rate=119,121,1
Fig. 4.19. Refrigeration capacity of dimple type plate absorber on solution flow rate=120,122,1
Fig. 4.20. Mass flux of dimple type plate absorber on solution flow rate=121,123,1
Fig. 4.21. Mass transfer coefficient of dimple type plate absorber on solution flow rate=122,124,1
Fig. 5.1. Drawing of high temperature solution heat exchanger=125,127,1
Fig. 5.2. Drawing of low temperature solution heat exchanger=125,127,1
Fig. 5.3. Photograph of manufacture for solution heat exchanger=125,127,1
Fig. 5.4. Drawing of high temperature generator=126,128,1
Fig. 5.5. Photograph of manufacture for high temperature generator=126,128,1
Fig. 5.6. Photograph of high temperature generator shell=127,129,1
Fig. 5.7. Drawing of condenser/low temperature generator=127,129,1
Fig. 5.8. Photograph of manufacture for condenser/low temperature generator=128,130,1
Fig. 5.9. Photograph of condenser/low temperature generator=128,130,1
Fig. 5.10. Drawing of tray for actual experiment=129,131,1
Fig. 5.11. Photograph of tray for plate absorber/evaporator=129,131,1
Fig. 5.12. Head of cooling water for plate absorber/evaporator=130,132,1
Fig. 5.13. Drawing of plate evaporator=131,133,1
Fig. 5.14. Photograph of partial manufacture for plate evaporator=131,133,1
Fig. 5.15. Drawing of plate absorber=132,134,1
Fig. 5.16. Photograph of partial manufacture for plate absorber=132,134,1
Fig. 5.17. Drawing of set for plate absorber/evaporator=133,135,1
Fig. 5.18. Photograph of set for plate absorber/evaporator=133,135,1
Fig. 5.19. Schematic diagram of absorption chiller=135,137,1
Fig. 5.20. Photograph of thermo couples=136,138,1
Fig. 5.21. Photograph of flow meter=137,139,1
Fig. 5.22. Drawing of shell for 20RT chiller/heater=138,140,1
Fig. 5.23. 20RT chiller/heater for actual experiment=139,141,1
Fig. 5.24. Flow design of experimental equipment=140,142,1
Fig. 5.25. Experimental temperature distribution of steady state=144,146,1
Fig. 5.26. Refrigeration capacity on cooling water inlet temperature=145,147,1
Fig. 5.27. Coefficient of performance on cooling water inlet temperature=146,148,1
Fig. 5.28. Refrigeration capacity on load ratio=147,149,1
Fig. 5.29. Absorption system performance on load ratio=148,150,1
Fig. 5.30. Model for calculation of plate absorber volume=149,151,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.