본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

표제지=0,1,1

최종보고서=0,2,1

제출문=1,3,1

요약문=2,4,5

목차=7,9,2

List of Figures=9,11,4

List of Table=13,15,1

제1장 서론=14,16,1

제1절 연구배경 및 목적=14,16,4

제2절 국내외 연구동향=17,19,3

제2장 플레이트형 흡수기의 수치 시뮬레이션=20,22,1

제1절 서론=20,22,1

제2절 플레이트 흡수기 모델 분석=20,22,1

1. 전체 플레이트 흡수기 모델=20,22,2

2. 각각의 플레이트에 대한 유하액막 모델=22,24,1

가. 모델 분석=22,24,1

나. 수치해석을 위한 가정=23,25,1

3. 지배방정식=23,25,1

가. 속도분포 방정식=23,25,3

나. 물질확산 방정식=25,27,1

4. 경계 조건=25,27,3

5. 각 단편에서의 냉매 유동 모델=27,29,2

6. 수치해석모델=28,30,4

제3절 수치해석 결과 및 고찰=32,34,1

1. 작동 조건=32,34,1

2. 모델의 타당성=32,34,3

3. 온도와 농도 분포=35,37,6

4. 질량유속과 총괄 물질전달률의 변화=41,43,2

5. 열 및 물질전달계수의 변화=43,45,2

6. 흡수 질량유속에 대한 실험조건의 영향=45,47,8

7. 플레이트 최적성 평가=53,55,7

8. 결과의 고찰=60,62,1

제4절 결론=60,62,2

제3장 실험장치 및 실험방법=62,64,1

제1절 실험장치의 구성=62,64,26

제2절 실험 방법=88,90,1

1. 흡수 실험 순서=88,90,2

2. 흡수 열교환기의 성능 평가 방법=89,91,5

제3절 실험조건 및 시스템 열평형=94,96,2

제4절 결론=96,98,1

제4장 열 및 물질전달 특성=97,99,1

제1절 흡수기내 온도분포=97,99,2

제2절 용액 유량에 따른 열 및 물질전달 특성=99,101,6

제3절 냉각수 유량에 따른 열전달 특성=105,107,6

제4절 계면활성제에 의한 열 및 물질전달 촉진=111,113,1

1. 계면활성제 농도에 따른 흡수기의 열 및 물질전달 특성=111,113,6

2. 용액유량에 따른 계면활성제의 영향=117,119,6

제5절 결론=123,125,1

제5장 20RT급 실증 시스템 성능평가=124,126,1

제1절 서론=124,126,1

제2절 20RT급 실증 실험장치=124,126,18

제3절 실험조건 및 측정방법=142,144,1

제4절 실증시험 결과 및 고찰=143,145,6

제5절 플레이트 흡수기/증발기의 컴팩트성 평가=149,151,2

제6절 결론=151,153,1

제6장 결론=152,154,2

참고문헌=154,156,4

그림목차

Fig. 1.1. Load pattern of power and gas on month=15,17,1

Fig. 1.2. Capacity distribution of general absorption chiller on each part=15,17,1

Fig. 1.3. Comparison between general shell & tube and plate type=16,18,1

Fig. 2.1. Analysis model of plate absorber=21,23,1

Fig. 2.2. Schematic diagram of absorption process in water-cooled vertical plate absorber=22,24,1

Fig. 2.3. Model of refrigerant flow=27,29,1

Fig. 2.4. Model for calculation of plate absorber volume=29,31,1

Fig. 2.5. Flow chart of numerical analysis on plate absorber=31,33,1

Fig. 2.6. Comparison of boundary temperature between the existing study and this study=32,34,1

Fig. 2.7. Comparison of boundary concentration between the existing study and this study=33,35,1

Fig. 2.8. Temperature distribution on film thickness=36,38,1

Fig. 2.9. Temperature distribution on wall distance=37,39,1

Fig. 2.10. Concentration distribution on film thickness=39,41,1

Fig. 2.11. Concentration distribution on wall distance=40,42,1

Fig. 2.12. Distribution of local heat and mass flux on wall distance=42,44,1

Fig. 2.13. Distribution of total heat and mass transfer rate on wall distance=42,44,1

Fig. 2.14. Distribution of local heat and mass transfer coefficient on wall distance=44,46,1

Fig. 2.15. Influence of film Reynolds number on local mass flux=46,48,1

Fig. 2.16. Influence of film Reynolds number on total mass transfer rate=46,48,1

Fig. 2.17. Influence of cooling water temperature at inlet on local mass flux=48,50,1

Fig. 2.18. Influence of cooling water temperature at inlet on total mass transfer rate=48,50,1

Fig. 2.19. Influence of system pressure on local mass flux=49,51,1

Fig. 2.20. Influence of system pressure on total mass transfer rate=49,51,1

Fig. 2.21. Influence of solution concentration at inlet on local mass flux=51,53,1

Fig. 2.22. Influence of solution concentration at inlet on total mass transfer rate=51,53,1

Fig. 2.23. Influence of solution temperature at inlet on local mass flux=52,54,1

Fig. 2.24. Influence of solution temperature at inlet on total mass transfer rate=52,54,1

Fig. 2.25. Temperature distribution (Re=10,1RT)=54,56,1

Fig. 2.26. Concentration distribution (Re=10,1RT)=54,56,1

Fig. 2.27. Effect of the plate interval for 0.5RT/piece=56,58,1

Fig. 2.28. Effect of the plate interval for 1RT/piece=57,59,1

Fig. 2.29. Effect of the plate interval for 2RT/piece=58,60,1

Fig. 2.30. Influence of plate absorber volume on capacity for 1 piece of plate absorber=59,61,1

Fig. 3.1. Experimental apparatus=63,65,1

Fig. 3.2. Schematic diagram of experimental apparatus=64,66,1

Fig. 3.3. Experimental apparatus=65,67,1

Fig. 3.4. Schematic diagram of plate absorber=66,68,1

Fig. 3.5. Schematic diagram of plate absorber/evaporator=66,68,1

Fig. 3.6. Photograph of inner set of plate absorber/evaporator=67,69,1

Fig. 3.7. Photograph of plate absorber/evanorator=67,69,1

Fig. 3.8. Plate basic form=69,71,1

Fig. 3.9. Plate layout=70,72,1

Fig. 3.10. Heat exchanger of plate absorber=70,72,1

Fig. 3.11. Dimple plate layout=72,74,1

Fig. 3.12. Dimple plate photograph=73,75,1

Fig. 3.13. Magnification photograph of dimple plate surface=73,75,1

Fig. 3.14. Fold type plate diagram=74,76,1

Fig. 3.15. Photograph of fold type plate=75,77,1

Fig. 3.16. Form of fold type plate=75,77,1

Fig. 3.17. Sight glass of inner plate absorber/evaporator=76,78,1

Fig. 3.18. Sight glass of inner plate absorber/evaporator (large size)=76,78,1

Fig. 3.19. Eliminator=77,79,1

Fig. 3.20. Plate tray=79,81,1

Fig. 3.21. Refrigerant tank=80,82,1

Fig. 3.22. Strong concentration tank=81,83,1

Fig. 3.23. Weak concentration tank=82,84,1

Fig. 3.24. Heater of generating tank=82,84,1

Fig. 3.25. Heat Pump for Temperature of refrigerant tank=83,85,1

Fig. 3.26. Constant temperature bath=83,85,1

Fig. 3.27. K-type thermocouple=85,87,1

Fig. 3.28. Adhesion of temperature sensor=85,87,1

Fig. 3.29. Refractor=86,88,1

Fig. 3.30. Specific gravity meter=86,88,1

Fig. 3.31. Magnetic flow meter=87,89,1

Fig. 3.32. Control panel=88,90,1

Fig. 3.33. Heat balance of absorber and evaporator=91,93,1

Fig. 3.34. Heat balance of calculation model=91,93,1

Fig. 3.35. Heat balance of experimental apparatus=95,97,1

Fig. 3.36. Experimental temperature distribution of steady state=95,97,1

Fig. 4.1. Temperature distribution at inner absorber=98,100,1

Fig. 4.2. Influence of hat flux on solution flow rate=100,102,1

Fig. 4.3. Total heat transfer coefficient of plate absorber=101,103,1

Fig. 4.4. Refrigeration capacity of plate absorber=102,104,1

Fig. 4.5. Mass transfer coefficient of plate absorber=103,105,1

Fig. 4.6. Absorption mass flux of plate absorber=104,106,1

Fig. 4.7. Heat flux of plate absorber on cooling water flow rate=106,108,1

Fig. 4.8. Refrigeration capacity of plate absorber on cooling water flow rate=107,109,1

Fig. 4.9. Total heat transfer coefficient of plate absorber on cooling water flow rate=108,110,1

Fig. 4.10. Mass transfer coefficient of plate absorber on cooling water flow rate=109,111,1

Fig. 4.11. Mass flux of plate absorber on cooling water flow rate=110,112,1

Fig. 4.12. Absorption heat flux of plate absorber=112,114,1

Fig. 4.13. Overall heat transfer coefficient of plate absorber=113,115,1

Fig. 4.14. Refrigeration capacity of plate absorber=114,116,1

Fig. 4.15. Mass transfer coefficient of plate absorber=115,117,1

Fig. 4.16. Mass flux of plate absorber=116,118,1

Fig. 4.17. Absorption heat flux of dimple type plate absorber on solution flow rate=118,120,1

Fig. 4.18. Overall heat transfer coefficient dimple type plate absorber on solution flow rate=119,121,1

Fig. 4.19. Refrigeration capacity of dimple type plate absorber on solution flow rate=120,122,1

Fig. 4.20. Mass flux of dimple type plate absorber on solution flow rate=121,123,1

Fig. 4.21. Mass transfer coefficient of dimple type plate absorber on solution flow rate=122,124,1

Fig. 5.1. Drawing of high temperature solution heat exchanger=125,127,1

Fig. 5.2. Drawing of low temperature solution heat exchanger=125,127,1

Fig. 5.3. Photograph of manufacture for solution heat exchanger=125,127,1

Fig. 5.4. Drawing of high temperature generator=126,128,1

Fig. 5.5. Photograph of manufacture for high temperature generator=126,128,1

Fig. 5.6. Photograph of high temperature generator shell=127,129,1

Fig. 5.7. Drawing of condenser/low temperature generator=127,129,1

Fig. 5.8. Photograph of manufacture for condenser/low temperature generator=128,130,1

Fig. 5.9. Photograph of condenser/low temperature generator=128,130,1

Fig. 5.10. Drawing of tray for actual experiment=129,131,1

Fig. 5.11. Photograph of tray for plate absorber/evaporator=129,131,1

Fig. 5.12. Head of cooling water for plate absorber/evaporator=130,132,1

Fig. 5.13. Drawing of plate evaporator=131,133,1

Fig. 5.14. Photograph of partial manufacture for plate evaporator=131,133,1

Fig. 5.15. Drawing of plate absorber=132,134,1

Fig. 5.16. Photograph of partial manufacture for plate absorber=132,134,1

Fig. 5.17. Drawing of set for plate absorber/evaporator=133,135,1

Fig. 5.18. Photograph of set for plate absorber/evaporator=133,135,1

Fig. 5.19. Schematic diagram of absorption chiller=135,137,1

Fig. 5.20. Photograph of thermo couples=136,138,1

Fig. 5.21. Photograph of flow meter=137,139,1

Fig. 5.22. Drawing of shell for 20RT chiller/heater=138,140,1

Fig. 5.23. 20RT chiller/heater for actual experiment=139,141,1

Fig. 5.24. Flow design of experimental equipment=140,142,1

Fig. 5.25. Experimental temperature distribution of steady state=144,146,1

Fig. 5.26. Refrigeration capacity on cooling water inlet temperature=145,147,1

Fig. 5.27. Coefficient of performance on cooling water inlet temperature=146,148,1

Fig. 5.28. Refrigeration capacity on load ratio=147,149,1

Fig. 5.29. Absorption system performance on load ratio=148,150,1

Fig. 5.30. Model for calculation of plate absorber volume=149,151,1

표목차

Table 2.1. Typical operating conditions for 1RT plate absorber unit=29,31,1

Table 2.2. Steady operation condition of plate absorber=33,35,1

Table 2.3. Physical state of LiBr solution on steady operation conditions=34,36,1

Table 2.4. Operating conditions of plate absorber for comparison with the existing researches=34,36,1

Table 2.5. Variable parameter of experimental conditions=45,47,1

Table 3.1. Specification of Experimental Apparatus=68,70,1

Table 3.2. Standard experimental conditions=94,96,1

Table 5.1. Specification of test plant=142,144,1

Table 5.2. Condition of experiment=142,144,1