본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

표제지=0,1,1

제출문=0,2,1

목차=0,3,7

요약문=1,10,4

SUMMARY=5,14,3

연차별 연구 결과 및 평가=8,17,3

연구성과=11,20,3

[주관 연구 대학:한동대학교]=14,23,1

1. Adjuvant 개발을 위한 기반확립=14,23,1

1-1. 최적 발효조건 확립=14,23,3

1-2. 시료의 in vivo 독성조사=17,26,1

1-3. 항체 역가 상승효과=18,27,3

1-4. 기존제품과의 비교=21,30,1

1-5. 다양한 항원에 대한 항체 생산 및 적정 조성 결정=22,31,2

1-6. Cytokine 유도능 조사=24,33,3

2. 경구 백신용 adjuvant 개발=27,36,1

2-1. 경구 독성 테스트=27,36,1

2-2. 경구 적정 농도 및 조성 결정=28,37,4

2-3. 경구용 adjuvant 개발=32,41,1

2-4. 경비 adjuvant 적정 농도 및 fomula 결정=33,42,2

2-5. 겨우살이 렉틴성분(KML-C)을 경비 투여시의 비장 세포의 분화능=35,44,2

2-6. 겨우살이 렉틴성분(KML-C)을 경비 투여시의 비장 세포의 cytokine 발현능=37,46,1

3. 항암제개발=38,47,1

3-1. In vitro 세포독성효과=38,47,1

3-2. Apoptosis 유도능 조사=39,48,3

3-3. in vivo에서의 종양성장 억제=42,51,3

3-4. 병용투여에 의한 종양성장 억제 효과=45,54,1

3-5. 종양 전이 억제 효과=46,55,3

4. 겨우살이의 렉틴 A chain의 독성을 이용한 Immunotoxin의 개발=49,58,1

4-1. 렉틴 A chain 유전자의 증폭 및 cloning=49,58,3

4-2. E.coli 에서의 recombinant immunotoxin의 발현=52,61,1

5. 면역증가(lectin) 유전자를 이용한 기능성 효모의 육종=53,62,1

5-1. 연구개발의 필요성=53,62,1

5-2. 연구 내용=53,62,1

1) 사용균주 및 배지=53,62,1

2) 유전자 재조합 plasmid의 구축 및 염기서열 분석=53,62,4

5-3. 단백질 수준에서의 Lectin A1 및 B1유전자 산물의 확인=57,66,1

5-4. 유전자 수준에서의 Lectin A1 및 B1유전자 산물의 확인=57,66,3

5-5. 효모를 이용한 면역강화 고기능성 식품 개발=59,68,1

1) 겨우살이 최적농도 결정=59,68,1

2) YKMs-110의 lectin 변화=59,68,2

3) YKMs-110의 in vivo 독성=61,70,3

4) 효모로 발효시킨 겨우살이(YKMs-110)의 세포독성 효과=64,73,2

5) YKMs-110의 경구 면역 증진 효과=65,74,4

6. 유전자 재조합에 의한 lectin 생산=69,78,1

6-1. Recombinant lectin protein을 가장 많이 발현시키는 bacterial host selection=69,78,1

6-2. Recombinant lectin의 발현 및 분리 정제=69,78,2

6-3. Recombinant lectin A1 protein을 정제=71,80,1

7. 겨우살이 추출물을 첨가한 겨우살이 빵의 항 당뇨 효과=72,81,1

7-1. 겨우살이 빵 사료(B-KM diet) 제조 및 당뇨 예방 효과=72,81,3

7-2. B-KM diet의 당뇨 치료 효과=74,83,4

8. 겨우살이의 분포도 조사=78,87,2

[공동 연구 대학:군산대학교]=80,89,1

1. 양어용 사료 첨가제 개발=80,89,1

1-1. 장어 Phagocyte의 respiratory burst 활성화 검색=80,89,2

1-2. 장어 혈청 내의 lysozyme 활성 검색=81,90,2

1-3. 장어 대식세포의 탐식능 검색=82,91,2

1-4. 병원균에 대한 겨우살이의 면역증강효과 검색=83,92,2

[공동 연구 대학:건양대학교]=85,94,1

1-1. 한국산 겨우살이 함유 산양 발효유(F-GM-KM)에 의한 면역학적 기능 향상과 기타 생리활성에 관한 연구=85,94,2

1-2. 한국산 겨우살이 추출물의 항당뇨 활성 해석과 임상시험에서의 유효성 확인=86,95,1

1) 당뇨마우스에서의 항당뇨 활성 해석=86,95,6

2) 임상실험에서의 유효성 조사=91,100,2

1-3. 한국산 겨우살이 추출물의 항고혈압 활성의 해석과 활성분획의 동정=93,102,2

참고문헌=95,104,9

표목차

Table 1. 각 균주의 최적 배양 온도 조건=14,23,1

Table 2. Lact. casei KCTC 2180에 의한 발효 후 Lectin 및 ph 변화=15,24,1

Table 3. Lact. plantarum KCTC 3103에 의한 발효 후 Lectin 및 ph 변화=15,24,1

Table 4. Lact. kefiri KCTC 3611에 의한 발효 후 Lectin 및 ph 변화=16,25,1

Table 5. Lact. acidophilus KCTC 3179에 의한 발효 후 Lectin 및 ph 변화=16,25,1

Table 6. LD50 values of various FKMs=17,26,1

Table 7. formulation of KM-110 in oral administration mice model=28,37,1

Table 8. formulation of KML-C in nasal administration mice model=33,42,1

Table 9. Primer for Q.C PCR=37,46,1

Table 10. The optimum concentration of various cell lines=38,47,1

Table 11. ED50 Values of Fermented Korean Mistletoe=38,47,1

Table 12. Antitumor effects of FKMs on S-180 induced Ascitic tumor model=43,52,1

Table 13. Lectin A gene primers for immunotoxin=50,59,1

Table 14. Used primer on this study=54,63,1

Table 15. KM lectin quantitative analysis by ELISA=57,66,1

Table 16. Concentration of lectin in fomented mistletoe by yeast=60,69,1

Table 17. In vivo toxicity studies in mouse model=61,70,1

Table 18. Optimal dose of cell lines=64,73,1

그림목차

Fig. 1. Adjuvant effect of FKMs=19,28,1

Fig. 2. Effect of FKM-110 on induction of KLH-specific antibody response=19,28,1

Fig. 3. Effect of FKM-110 on induction of KLH-specific DTH reaction=20,29,1

Fig. 4. Effect of FKM-110 on induction of KLH-specific antibody response=21,30,1

Fig. 5. Effect of FKM-110 on induction of Ag-specific antibody response=22,31,2

Fig. 6. Effect of FKM-110 on induction of Ag-specific DTH reaction=23,32,1

Fig. 7. Induction of cytokines by LcKMs-110 with different incubation times=25,34,1

Fig. 8. Induction of cytokines by LpKMs-110 with different incubation times=25,34,1

Fig. 9. Induction of cytokines by LaKMs-110 with different incubation times=26,35,1

Fig. 10. Induction of cytokines by LkKMs-110 with different incubation times=26,35,1

Fig. 11. Acute toxicity of KM-110 in oral administration mouse model=27,36,1

Fig. 12. Subacute toxicity of KM-110 in oral administration mouse model=27,36,1

Fig. 13. Effect of KM-110 on induction of OVA-specific antibody response=29,38,1

Fig. 14. Effect of KM-110 on induction of OVA-specific antibody response in mouse colon wash.(lgG.A.M)=29,38,1

Fig. 15. Effect of KM-110 on induction of OVA-specific antibody response in mouse colon wash.(lgG)=30,39,1

Fig. 16. Effect of KM-110 on induction of OVA-specific antibody response in mouse colon wash.(lgA)=30,39,1

Fig. 17. Effect of KM-110 on induction of OVA-specific antibody response in mouse serum(lgG1)=31,40,1

Fig. 18. Effect of KM-110 on induction of OVA-specific antibody response in mouse serum(lgG2a)=31,40,1

Fig. 19. Effect of KM-110 on Lactobacillus sp. on induction of KLH-specific antibody response in sera and fecal by oral administration=32,41,1

Fig. 20. Anti-HA antibody titer in serum 1,3w C-1(KML-C 10㎍/H),C-2(KML-C 1㎍/H),C-3(KML-C 0.1㎍/H)=33,42,1

Fig. 21. Anti-HA antibody titer in vaginal wash 1,3w C-1(KML-C 10㎍/H),C-2(KML-C 1㎍/H),C-3(KML-C 0.1㎍/H)=34,43,1

Fig. 22. Anti-HA antibody titer in serum for long term=34,43,1

Fig. 23. Anti-HA antibody titer in vaginal wash for long term=34,43,1

Fig. 24. B cell population with CD19-PE staining in splenocyte=35,44,1

Fig. 25. T cell population with CD3-FITC staining in splenocyte=36,45,1

Fig. 26. CTL population with dual staining of CD3-FITC and CD8-CYchrom in splenocyte=36,45,1

Fig. 27. Cytokine expression in splenocyte=37,46,1

Fig. 28. DNA laddering by LcKMs-110=39,48,1

Fig. 29. DNA laddering by LpKMs-110=40,49,1

Fig. 30. DNA laddering by LaKMs-110=40,49,1

Fig. 31. DNA laddering by LkKMs-110=41,50,1

Fig. 32. Apoptotic effect of LcKMs-110 monitered by Flow-cytometry with Annexin-V staining=41,50,1

Fig. 33. change of weight after treatment of various preparations of FKMs=43,52,1

Fig. 34. Effect of various FKMs on the survival of mouse=44,53,1

Fig. 35. Anti-tumoral effects of LkKMs(fomented by L kefiri) in vivo=44,53,1

Fig. 36. Anti-tumoral effects of LaKMs(fomented by L acidophilus) in vivo=44,53,1

Fig. 37. combination effect on S-180 induced Ascitic tomor in vivo=45,54,1

Fig. 38. Inhibitory effect of LcKM against B16-BL6 carcinoma cell induced tumor lung metastasis=46,55,1

Fig. 39. Inhibitory effect of LpKM against B16-BL6 carcinoma cell induced tumor lung metastasis=47,56,1

Fig. 40. Inhibitory effect of LkKM against B16-BL6 carcinoma cell induced tumor lung metastasis=47,56,1

Fig. 41. Inhibitory effect of LaKM against B16-BL6 carcinoma cell induced tumor lung metastasis=48,57,1

Fig. 42. Inhibitory effect of LaKMs against B16-BL6 carcinoma cell induced tumor lung metastasis=48,57,1

Fig. 43. Pairwise alignment of korean mistletoe lectin A gene=49,58,1

Fig. 44. PCR amplication of LecA gene=50,59,1

Fig. 45. confirming LecA gene by PCR in pGEM-T easy vector=50,59,1

Fig. 46. double digestion with restriction enzyme of Notl and EcoRl=51,60,1

Fig. 47. construction of immunotoxin vector with LecA gene=51,60,1

Fig. 48. Expression of scFv-PE and scFv-A in time course=52,61,1

Fig. 49. nt and aa alignment between recombinant lectin A and neutral KM lectin=55,64,1

Fig. 50. nt and aa alignment between recombinant lectin B and neutral KM lectin=56,65,1

Fig. 51. RT-PCR of rKM lectin yeast transformant=58,67,1

Fig. 52. Expression of rKM lectin A and B mRNA=58,67,1

Fig. 53. The effect of YKMs-110 on agglutination of RBC=60,69,1

Fig. 54. Change of body weight in mice administrated various routes(i.p.,i.v.,s.c.) with YKMs-110 and Mistlero-C=63,72,1

Fig. 55. ED50 value of YKMs-110=65,74,1

Fig. 56. Effect of YKMs-110 and yeast on induction of KLH-specific antibody response in sera=66,75,1

Fig. 57. Effect of YKMs-110 and yeast on induction of KLH-specific antibody response in fecal and vaginal=67,76,1

Fig. 58. Effect of YKMs-110 and Saccharomyces cerevisiae on induction of KLH-specific DTH reaction=68,77,1

Fig. 59. SDS-Gel electrophoresis of recombinant lectin gene=70,79,1

Fig. 60. Western blotting of recombinant lectin gene A1=70,79,1

Fig. 61. SDS-PAGE after Dialysis of recombinant lectin gene A1=71,80,1

Fig. 62. Protective effect of B-KM-containing diet and KM-free diet for 38 days on body weight change in alloxan-induced mice=72,81,1

Fig. 63. Protective effect of B-KM-containing diet and KM-free diet on water and feed consumption in alloxan-induced mice=73,82,1

Fig. 64. Effect of pre-treated B-KM-containing diet and KM-free diet on blood sugar level in alloxan-induced mice=73,82,1

Fig. 65. Effect of pre-treated B-KM-containing diet and KM-free diet on blood sugar level in alloxan-induced mice=74,83,1

Fig. 66. Effect of B-KM-containing diet and KM-free diet for 38 days on Body weight change in alloxan-induced mice=75,84,1

Fig. 67. Effect of B-KM-containing diet and KM-free diet on water and feed consumption in alloxan-induced mice=75,84,1

Fig. 68. Effect of B-KM-containing diet and KM-free diet on blood sugar level in alloxan-induced mice=76,85,1

Fig. 69. Activation rate of insulin in the island of pancrease=77,86,1

Fig. 70. Histologic examination of pancrease=77,86,1

Fig. 1. The dietary effect of mistletoe in the ROl production of kidney leukocyte at 2,4 and 8weeks feeding=81,90,1

Fig. 2. The dietary effect of mistletoe on lysozyme activity in eel serum at 2,4 and 8weeks feeding=82,91,1

Fig. 3. The dietary effect of mistletoe on phageocytic activity of eel leukocytes at 2 and 4 weeks feeding=83,92,1

Fig. 4. The dietary effect of mistletoe on anti-bacterial immune response in eel=84,93,1

Fig. 1. Activation effect of spleenocytes in dose dependent F-GM-KM with KM-110=85,94,1

Fig. 2. Increasing effect of basic metabolite by KM-110 and HKM-110=86,95,1

Fig. 3. Control of blood glucose level by HKM-110 before and after meal=87,96,1

Fig. 4. antidiabetic effect by drinking HKM-110 in diabetic mice=87,96,1

Fig. 5. Suppressive effect of body weight decrease by drinking HKM-110 in dibetic mice=88,97,1

Fig. 6. Recheck of low glucose level induction by HKM-110=88,97,1

Fig. 7. Comparison of antidiabetic activities depending on KM extracts=89,98,1

Fig. 8. Comparison of basic metabolic increase depending on KM extracts=89,98,1

Fig. 9. Comparison of induction model of diabete by streptozotosin(STZ)=89,98,1

Fig. 10. Antidiabetic effect of HKM-110 in type1 diabetic mice=90,99,1

Fig. 11. Recovery effect of weight by HKM-110 in type1 diabetic mice=90,99,1

Fig. 12. Quenching effect of thirsty by HKM-110 in STZ inductive diabetic mice=90,99,1

Fig. 13. Histochemical changes by HKM-110 in type1 diabetic mice model=91,100,1

Fig. 14. Control effect of blood glucose level by HKM-110 in diabetic patients=92,101,1

Fig. 15. Reducing effect of HbA1 by HKM-110 in diabetic patients=92,101,1

Fig. 16. comparison of anti-hypertension activities depending on KM extracts=93,102,1

Fig. 17. Fractionation of HKM-110 by Bio-gel-P6=94,103,1

Fig. 18. anti-hypertesion activities of the each fraction by Bio-Gel-P6=94,103,1