본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

[표제지 등]=0,1,2

연구보고서=0,3,1

차례=i,4,3

표차례=iv,7,1

그림차례=v,8,6

국문요약=xi,14,1

Summary=xii,15,1

제1장 서론=1,16,2

제2장 레이더 운영 및 적응 연구=3,18,1

제1절 현장연구과제=3,18,1

2.1.1. 기상레이더 영상자료 실시간 표출시스템 구축=3,18,1

2.1.1.1. 서론=3,18,1

2.1.1.2. 결과=4,19,2

2.1.2. 광덕산 레이더자료를 이용한 강원 중북부지방의 호우특성 연구=6,21,1

2.1.2.1. 서론=6,21,2

2.1.2.2. 결과=7,22,3

제2절 기상레이더 워크숍=10,25,1

제3절 레이더 운영 및 환경 개선=11,26,1

2.3.1. 연구용레이더 홈페이지 개선=11,26,1

2.3.2. 레이더 유지보수 용역과 일일운영=12,27,2

2.3.3. 레이더 주요 작업 및 일일 기상 관측=14,29,1

제3장 하계 학ㆍ연ㆍ관 공동 집중관측 및 분석=15,30,1

제1절 서론=15,30,1

제2절 관측자료 및 분석 방법=16,31,1

제3절 사례분석 1 (태풍에 의한 호우: 2004.7.3 - 7.4)=17,32,1

3.3.1. 종관관측자료 분석=17,32,2

3.3.2. 강수 관측자료 분석=19,34,4

3.3.3. 수치예보모델 산출자료 분석=22,37,5

3.3.4. 비종관 관측자료 분석=26,41,9

제4절 요약 및 결론=35,50,2

제4장 정량적 강우량 자료 산출 및 강수예보 검증=37,52,1

제1절 WPMM 기법에 의한 정량적 강우강도 자료 산출=37,52,1

4.1.1. 서론=37,52,2

4.1.2. 관측 자료=38,53,1

4.1.2.1. 레이더 반사도 자료=38,53,2

4.1.2.2. 강우량계 자료=39,54,2

4.1.3. 분석 방법=40,55,1

4.1.3.1. 레이더 관측 효율 조사=40,55,2

4.1.3.2. Z-R 관계 산출 알고리즘=41,56,6

4.1.3.3. 상관도 공간분포 분석=46,61,2

4.1.4. 분석 결과=47,62,1

4.1.4.1. 태풍 사례 분석=47,62,7

4.1.4.2. 장마전선 사례 분석=53,68,7

4.1.5. 요약 및 결론=59,74,2

제2절 초단시간 강수량 예측모델 검증=61,76,1

4.2.1. 단시간 강수 예측모델=61,76,1

4.2.1.1. 서론=61,76,2

4.2.1.2. 모델 입력자료 및 구성=62,77,2

4.2.1.3. 모델의 예보과정=63,78,5

4.2.1.4. 요약 및 결론=68,83,1

4.2.2. 모델검증=69,84,1

4.2.2.1. 서론=69,84,1

4.2.2.2. 강수예보검증 방법=69,84,4

4.2.2.3. 강수검증 프로그램 구성=72,87,2

4.2.2.4. 사례분석=73,88,9

4.2.2.5. 요약 및 결론=81,96,2

제5장 도플러 바람장을 이용한 사례분석=83,98,1

제1절 VVP 알고리즘 개선 및 사례분석=84,99,1

5.1.1. 서론=84,99,1

5.1.2. 자료 및 방법=84,99,4

5.1.3. 결과=87,102,1

5.1.3.1. 가상실험을 통한 정확도 검증=87,102,4

5.1.3.2. 사례분석(2004년 6월 19일)=90,105,8

5.1.4. 요약 및 결론=97,112,1

제2절 이중 도플러 바람장을 이용한 강우시스템 분석=98,113,1

5.2.1. 서론=98,113,2

5.2.2. 자료 및 방법=99,114,1

5.2.2.1. 대류형 강우 시스템 이론=99,114,3

5.2.2.2. 레이더 자료=101,116,2

5.2.3 결과=102,117,1

5.2.3.1. 기상개황=102,117,7

5.2.3.2. 3차원 바람장 분석=109,124,9

5.2.4. 요약 및 결론=118,133,1

제6장 요약 및 향후계획=119,134,8

참고문헌=127,142,3

(부록 1) 연구용 기상레이더의 일일 운영일지 사례(1면)=130,145,1

(부록 2) 연구용 기상레이더의 일일 운영일지 사례(2면)=131,146,1

(부록 3) 2004년도 연구용 기상레 이더 주요 작업 일지=132,147,5

(부록 4) 2004년도 연구용 기상레 이더 주요 관측 일지=136,151,4

(부록 5) 레이더 관측에 의한 남서해안의 겨울철 특성 연구=140,155,1

연구보고서=141,156,1

차례=142,157,2

List of Figures=144,159,3

List of Tables=147,162,1

제1장 서론=148,163,1

1.1. 연구 배경=148,163,1

1.2. 국내ㆍ외 연구 동향=148,163,1

1.2.1. 국내의 연구동향=148,163,2

1.2.2. 국외의 연구동향=149,164,2

1.3. 연구 개요=150,165,2

제2장 도플러 레이더 자료를 이용한 바람장 연구=152,167,1

2.1. 사례 선정과 분석 자료=152,167,1

2.1.1. 사례 선정=152,167,1

2.1.2. 분석 자료=152,167,3

2.2. 자료 처리=155,170,1

2.2.1. 비기상학적 에코의 제거=155,170,1

2.2.2. 도플러레이더의 평균 바람장 추정=155,170,1

2.2.2.1. VVP 방법=155,170,4

2.2.2.2. VVP 실행=158,173,3

2.2.2.3. 대기의 연직 속도 계산=160,175,2

2.3. 분석 결과=162,177,1

2.3.1. 시계열 분석=162,177,4

2.3.2. 강설이 발달하는 종관 상태=166,181,1

2.3.2.1. 종관 상태=166,181,3

2.3.2.2. 구름의 공간적인 분포=169,184,1

2.3.2.3. 대기의 역학 및 열역학적 상태=169,184,6

2.3.3. VVP 방법에 의한 평균 바람장 추정=174,189,2

2.3.3.1. PPI와 RHl영상 분석을 통한 구름의 특성=175,190,6

2.3.3.2. VAD 방법에 의한 평균 바람장의 특성=181,196,1

2.3.3.3. VVP 방법에 의한 평균 바람장의 운동학적 특성=181,196,7

제3장 강설운의 강수 구조 분석=188,203,1

3.1. 관측자료 및 분석방법=188,203,4

3.2. 분석 결과=192,207,1

3.2.1. 강설입자의 직경분포 특성=192,207,9

3.2.2. Z-R 관계식의 산출=201,216,3

3.2.3. 강설(량) 강도의 평가=204,219,5

3.2.4. 눈결정과 강설운의 강수구조 특성 분석=209,224,7

제4장 요약 및 결론=216,231,1

4.1. 레이더 자료를 이용한 바람장 특성 분석=216,231,4

4.2. 강설운의 강수구조 분석=219,234,3

참고문헌=222,237,3

표목차

Table 2.1.1. The Products Of Jindo S-Band Radar Supplied By Intranet Site=4,19,1

Table 2.3.1. The Periodical Maintenance For Muan X-Band Radar=13,28,1

Table 4.1.1. The Characteristics Of KMA(Korea Meteorological Administration) Operational Radars=39,54,1

Table 4.1.2. Comparisons Of The Correlation Coefficient, RMSE, Mean Error And Mean Of Estimated, Measured Rain Rate On 4 Jul. 2004=52,67,1

Table 4.1.3. Same As Table 4.1.2 Except On 7 Jul. 2004=57,72,1

Table 4.2.1. Description Of VSRF Initial Data=62,77,1

Table 4.2.2. Rain Contingency Table=70,85,1

Table 4.2.3. Accuracy Of 5-River Basins=75,90,1

Table 4.2.4. Bias Score Of 5-River Basins=76,91,1

Table 4.2.5. POD(Probability Of Detection) Of 5-River Basins=77,92,1

Table 4.2.6. FAR(False Alarm Ratio) Of 5-River Basins=78,93,1

Table 4.2.7. CSI(Critical Success Index) Of 5-River Basins=79,94,1

Table 4.2.8. Hydrological Verification Of 5-River Basin=80,95,1

Table 5.1.1. The Characteristics Of KMA Doppler Radars=85,100,1

Table 5.1.2. The Grid Characteristics Of VVP Horizontal Wind Each KMA Radars=87,102,1

Table 5.2.1. The Characteristics Of Jindo And Muan Radars=102,117,1

그림목차

Fig 2.1.1. Main Home Page Of Image Display System For Jindo S-Band Radar And Muan X-Band Radar=5,20,1

Fig 2.3.1. The Internet Home Page Of MRI'S X-Band Doppler Weather Radar For Monitering Of Severe Weather System=11,26,1

Fig 3.2.1. Observation Systems Of National Severe Weather Integrated Observation Center(At Heanam)=16,31,1

Fig 3.2.2. Observation Systems Of National Severe Weather Integrated Observation Center(At Muan)=16,31,1

Fig 3.3.1. Synoptic Weather Charts For Surface On 00UTC 2 And 3 Jul. 2004=17,32,1

Fig 3.3.2. Synoptic Weather Charts For 850(Left) And 200 hPa(Right) On 00 UTC 3 Jul. 2004=18,33,1

Fig 3.3.3. Daily Accumulated Rainfall Amount On 2-4 Jul. 2004=19,34,1

Fig 3.3.4. Distribution Of Rainfall Amount By AWS And ORG On 3 Jul. 2004 At Mokpo=20,35,1

Fig 3.3.5. The Same As Fig. 3.3.4. Except On 4 Jul. 2004 At Haenam=20,35,1

Fig 3.3.6. Distribution Of Rainfall Drop Size On 07LST 4 Jul. 2004 At Haenam=21,36,1

Fig 3.3.7. The Coalescence Process By Bin-Resolving Coalescence Model=21,36,1

Fig 3.3.8. The Reflectivity, Rain Rate, Liquid Water Contents, And Falling Velocity Of Drops By MRR On 07LST 4 Jul. 2004=22,37,1

Fig 3.3.9. The Auxiliary Analysis Charts Of RDAPS On 00LST 3 Jul. 2004=23,38,1

Fig 3.3.10. The Same As Fig. 3.3.9. Except On 00LST 4 Jul. 2004=24,39,1

Fig 3.3.11. The Accumulated Rainfall Amount By AWS And NWP Model On 14-17LST 3 Jul. 2004=25,40,1

Fig 3.3.12. GOES-9 Composite Image And Radar Reflectivity On 09 LST 3 Jul. 2004=27,42,1

Fig 3.3.13. The Same As Fig. 3.3.12 Except On 10 LST 3 Jul. 2004=28,43,1

Fig 3.3.14. The Same As Fig. 3.3.12 Except On 11 LST 3 Jul. 2004=29,44,1

Fig 3.3.15. The Same As Fig. 3.3.12 Except On 12 LST 3 Jul. 2004=29,44,1

Fig 3.3.16. The Same As Fig. 3.3.12 Except On 13 LST 3 Jul. 2004=30,45,1

Fig 3.3.17. The Same As Fig. 3.3.12 Except On 14 LST 3 Jul. 2004=31,46,1

Fig 3.3.18. The Same As Fig. 3.3.12 Except On 15 LST 3 Jul. 2004=32,47,1

Fig 3.3.19. The Same As Fig. 3.3.12 Except On 17 LST 3 Jul. 2004=33,48,1

Fig 3.3.20. The Vertical Cross Section Of Radar Reflectivity And Analyses Of Dual Doppler On 1430 LST 3 Jul. 2004=34,49,1

Fig 4.1.1. The Effective Height(Red Line) According To Radar Scan Range=39,54,1

Fig 4.1.2. Grid Map(Horizontal Resolution:2X2 Km) Of Measurement Efficiency Rates Using Reflectivity Data At (A) C-Band And (B) S-Band Radars From Mar. To May 2004. Symbols(△) Represents Centers Of Each Radar=41,56,1

Fig 4.1.3. The Flow Chart Of The Computed Precipitation Of Radar-Raingauge At 7 Radars And 581 Raingauges=42,57,1

Fig 4.1.4. Pairs(Asterisks) Of Rain Rates(mm/H) And Reflectivity(dBZ), Z-R Relationships Estimated Using WPMM Under 30 dBZ(Long Dashed Line), Above 30 dBZ(Dashed Line) And Stratiform Method(Z=200R(1.6), Solid Line) At Donghae Radar On 0905 LST 7 Jul. 2004(이미지 참조)=45,60,1

Fig 4.1.5. The Coefficients Distribution Of Z-R Relationship At 7 Radar (A) 4 And (B) 7 Jul. 2004. X Axis Represents b And Y Axis Represents a About Z=aR(B)(이미지 참조)=46,61,1

Fig 4.1.6. Rain Rates Using (A) TRMM/GSP, (B) Stratiform Method(Z=200R(1.6)) And (C) WPMM At 5 C-Band Radars, (D) Stratiform Method And (E) WPMM At 2 S-Band Radars On 0640 LST 4 Jul. 2004(이미지 참조)=49,64,1

Fig 4.1.7. Accumulations Of Daily Observed And Estimated Precipitation Using WPMM(Red Square), Stratiform Method(Blue Cross) At (A) C-Band, (B) S-Band Radars On 4 Jul. 2004=50,65,1

Fig 4.1.8. Total Precipitation At Raingauges, C-Band, S-Band Radars Using WPMM And Stratiform Method On 4 Jul. 2004=51,66,1

Fig 4.1.9. Mean Errors Of Precipitation(mm/H) Using WPMM At (A) C-Band And (B) S-Band Radars At Raingauges On 4 Jul. 2004 AWS ID Of X Axis Means The Number Of Each AWS Site=51,66,1

Fig 4.1.10. Spatial Distributions Of Correlation Coefficient At (A) C-Band, (B) S-Band Radars, And RMSE(Mm/H) At (C) C-Band, (D) S-Band Radars On 4 Jul. 2004=53,68,1

Fig 4.1.11. Same As Fig. 4.1.6 Except 1150 LST 07 Jul. 2004=55,70,1

Fig 4.1.12. Same As Fig. 4.1.7 Except On 7 Jul. 2004=56,71,1

Fig 4.1.13. Same As Fig. 4.1.8 Except On 7 Jul. 2004=56,71,1

Fig 4.1.14. Same As Fig. 4.1.9 Except On 7 Jul. 2004=57,72,1

Fig 4.1.15. Same As Fig. 4.1.10 Except On 7 Jul. 2004=59,74,1

Fig 4.2.1. Flowchart Of The Forecast And Merge Process Of VSRF=63,78,1

Fig 4.2.2. Conceptual Model Illustrating Enhancement Of Rain After Bergen, Adapted From Bergeron (1965)=65,80,1

Fig 4.2.3. Mechanism Of Enhancement And Dissipation Of Precipitation By The Orographic Effect=66,81,1

Fig 4.2.4. Schematic Diagram Of Extrapolation With Displacement Vector And Orographic Effect=66,81,1

Fig 4.2.5. Quality Of Forecasts(Accuracy X Resolution) As A Function Of Forecast Time(Partly From Browning, 1982)=67,82,1

Fig 4.2.6. Weighting Function For Appling To The Merge Process Between VSRF And RDAPS Precipitation=67,82,1

Fig 4.2.7. Matching From AWS Point To VSRF Grid=73,88,1

Fig 4.2.8. Thiessen's Polygon Of 5-River Basins=73,88,1

Fig 4.2.9. AWS And VSRF Rainband=74,89,1

Fig 4.2.10. Accuracy Of The Korean Peninsula=75,90,1

Fig 4.2.11. Bias Score Of The Korean Peninsula=76,91,1

Fig 4.2.12. POD Of The Korean Peninsula=77,92,1

Fig 4.2.13. FAR Of The Korean Peninsula=78,93,1

Fig 4.2.14. CSI Of The Korean Peninsula=79,94,1

Fig 4.2.15. Correlation Of Han And Sumjin-River Basin=81,96,1

Fig 4.2.16. Goes-9 Satellite Image On 17 Aug. 2004=81,96,1

Fig 5.1.1. Schematic Diagram Of VVP Method=86,101,1

Fig 5.1.2. The Simulated Wind Field Of (A) Speed, (B) Direction, And.(C) The Radial Velocity At The View Of Zero Elevation Angle=88,103,1

Fig 5.1.3. The Retrieved Wind Field Using VVP Method From The Simulated Wind.: (A) Muan, (B) Youngjodo, (C) Gwangduksan, And (D) Jindo Radars At The Height Of 2.5 And 5Km=88,103,1

Fig 5.1.4. Error Of VVP Wind Speed And Direction Against The Simulated Wind Field=89,104,1

Fig 5.1.5. (A) GOES9 IR Image And (B) The Retrieved Horizontal Wind Of Youngjondo Radar Using VVP Method At The Height Of 2.5 Km On 1000 LST 6 Aug. 2003=90,105,1

Fig 5.1.6. Surface Weather Chart On 12UTC 19 Jun. 2004=91,106,1

Fig 5.1.7. The Synoptic Conditions On 12UTC 19 Jun. 2004.:(A)GOES9 Enhanced IR. (B) QSCAT Wind Field, (C) The Accumulated 1-Hour Rainfall And Wind Field Of AWS, And (D) Radar Composite=92,107,1

Fig 5.1.8. The Wind Field Of Haenam Wind Profiler And The Horizontal Wind Of Muan Radar Retrieved By VVP Method On 2100 LST 19 Jun. 2004: (A) The Wind Of Haenam Wind Profiler, And The Horizontal Wind Of Muan Radar At The Height Of (B) 1.0 Km, (C) 2.0 Km, (D) 3.0 Km, (D) 4.0 Km, And (E) 5.0 Km=93,108,1

Fig 5.1.9. Same As Fig. 5.1.7 Except For Jindo Radar=94,109,1

Fig 5.1.10. Same As Fig. 5.1.7 Except For Gwangneung Wind Profiler And Gwangduksan Radar=95,110,1

Fig 5.1.11. Same As Fig. 5.1.7 Except For Munsan Wind Profiler And Youngjongdo Radar=96,111,1

Fig 5.1.12. The Difference Distribution Of Wind Field Between Munsan Wind Profiler And Youngjongdo Radar=97,112,1

Fig 5.2.1. The Structure Of Single Storm: (A) The Towering Cummulus Stage, (B) Mature Stage, And (C) Dissipating Stage Of A Short-Lived Convective Cell.(Courtesy Of C. A. Doswell, NOAA/ERL/WRP, Boulder, Co.; Adapted From Byers And Brahm, 1949)=100,115,1

Fig 5.2.2. The Structure Of Multi-Storm, Along The Storm's Direction Of Travel Through A Series Of Evolving Cells(N-2, N-1, N, N+1). The Solid Lines Are Stream Lines Of Flow Relative To The Moving System; On The Left Their Broken Ends Represent Flow Into And Out Of The Plane, And On The Right They Represent Flow Remaining Within A Plane A Few Kilometers Closer To The Reader. Light Shading Represents The Extent Of The Cloud, And The Three Darker Shades Represent Radar Reflectivities Of 35, 45, And 50 dBZ(From Browning et al., 1976)=101,116,1

Fig 5.2.3. Weather Chart At The Pressure Level Of (A) Surface, (B) 850 hPa, (C) 500 hPa, And (D) 200hPa On 12UTC 22 Jul. 2003=103,118,1

Fig 5.2.4. RDAPS 10 Km 15-Hour Forecast On 00UTC 22 Jul. 2003.;(A) Convergence At The Pressure Of 850 hPa, (B) The Divergence At The Pressure Of 200 hPa, (C) The Moisture Flux At The Pressure Of 850 hPa, (D) The Accumulated Precipitation At The Surface, (E) The Equivalent Potential Temperature At The Pressure Of 850 hPa, And (F) K-Index=104,119,1

Fig 5.2.5. The Skew-T Diagram Of Upper Observation Located At Kwangju On 2100 LST 22 Jul. 2003=105,120,1

Fig 5.2.6. The Synoptic Condition: (A) GOES9 Enhanced IR Image, (B) The Accumulated 15-Minute Rainfall Of AWS, And (C) The Composite Of KMA Radars=106,121,1

Fig 5.2.7. The Enhanced IR Images Of GOES9 From 2200 LST 22 To 0030LST 23 Jul. 2003=107,122,1

Fig 5.2.8. The Accumulated 10-Minute Rainfall Of AWS Located On (A)Jaundo, (B) Unnam, (C) Muan, And (D) Kwangsan From 22 To 23 Jul. 2003=108,123,1

Fig 5.2.9. CAPPI Of Reflectivity And Horizontal Wind At The Height Of 3 Km=110,125,1

Fig 5.2.10. Vertical Cross-Sections(Bb') Of Fig. 5.2.9: (A) Vertical Velocity And Reflectivity, (B) Wind Speed And Direction, (C) Vertical Wind Shear And Horizontal Divergence, And (D) Reflectivity And Gorizontal Wind=110,125,1

Fig 5.2.11. The Reflectivity Scanned On 2318 LST 22 Jul 2003=111,126,1

Fig 5.2.12. The Reflectivity Of CAPPI And RHI Scanned By Muan Doppler Radar,7 (A) The Reflectivity And Horizontal Wind At The Height Of 3 Km, RHI At (B) 2224 LST, (C) 2258 LST, (D) 2308 LST, (E) 2318 LST, (F) 2238 LST, And (G) 2338 LST 22 Jul. 2003=112,127,1

Fig 5.2.13. CAPPI Of Reflectivity And Horizontal Wind At The Height Of 3 Km=113,128,1

Fig 5.2.14. Vertical Cross-Sections(Aa') Of Fig. 5.2.13: (A) Vertical Velocity And Reflectivity, (B) Wind Speed And Direction, (C) Vertical Wind Shear And Horizontal Divergence, And (D) Reflectivity And Horizontal Wind On 2200 LST 22 Jul. 2003=114,129,1

Fig 5.2.15. Same As Fig. 5.2.14 Except On 2230 LST 22 Jul. 2003=115,130,1

Fig 5.2.16. Same As Fig. 5.2.14 Except On 2320 Lsi 22 Jul. 2003=116,131,1

Fig 5.2.17. Same As Fig. 5.2.14 Except On 0000 LST 23 Jul. 2003=116,131,1

Fig 5.2.18. The Reflectivity And Streamlines Of Flow Relative To The Moving System On 0000 LST 23 Jul. 2003=117,132,1

표목차

Table 2.1. Characteristics Of X Band Radar Installed At Muan=154,169,1

Table 2.2. Snow Accumulation For 1 Day From 2 To 8 Feb. 2004=163,178,1

Table 3.1. POSS Channel Parameters=191,206,1

Table 3.2. The Gamma Raindrop Size Distribution Parameter For Different Rainrate Categories In 2001=200,215,1

Table 3.3. The Gamma Raindrop Size Distribution Parameter For Different Rainrate Categories In 2002=200,215,1

Table 3.4. The Z-R Relationships With POSS, WMO, And WSR-88D Radar=205,220,1

그림목차

Fig. 2.1. Locations Of Muan Doppler Radar(■). Radiosonde(△). And AWS(●) Observation Site=153,168,1

Fig. 2.2. Data Processing Geometry Of VVP Method. The Verfical Depth And Slice Diameter Are 250m And 30 Km, Respectively=160,175,1

Fig. 2.3. Time Series Of 3 Hr Accumulated Snowfall (cm) At (A) Gwanugju And (B)Mokpo=164,179,1

Fig. 2.4. Time Series Of Weather Elements : Temperature(℃). Relative Humidity(&), Pressure(hPa). Wind Direction(Deg.), Wind Speed(m/s) And Precipitation(nm/15nin.) At Gwangju And Mokpo On 5 Feb. 2004=165,180,1

Fig. 2.5. Surface Weather Charts At (A) 2100 LST On 4 And (B) 0900 LST On 5 Feb. 2004. Solid Lines Represent Isobars In The Interval Of 4hPa=167,182,1

Fig. 2.6. Weather Charts Of 850hPa At (A) 2100LST On 4 And (B) 0900 LST On 5 Feb. 2004. Geopotential Height(30 gpm), And Temperature(3℃). Dotted Shadings Indicate The Regions Of Dew Point Depression < 3℃=168,183,1

Fig. 2.7. IR Images At (A) 0500LST, (B) 0900LST, And (C) 1300LST 5 Feb. 2004=170,185,1

Fig. 2.8. Radiosonde Observation From Gwangju At 0300 LST (Blue) And 0900 LST (Red) 5 Feb. 2004=172,187,1

Fig. 2.9. Vertical Profiles Of Potential Temperature(Θ), Equivalent Potential Temperature(Θ(E)) And Saturated Potential Tempera-Ture(Θ(Es)) At (A) 0300 LST And (B) 0900 LST From Gwangju 5 Feb. 2004(이미지 참조)=173,188,1

Fig. 2.10. Vertical Profiles Of Wind Speed(m/s) And Wind Direchon(deg.) At 0300 LST And 0900 LST From Gwangju 5 Feb. 2004=173,188,1

Fig. 2.11. Vertical Profiles Of AIR Temperature At Gwangju 5 Feb. 2004. The Dotted, Solid, And Dashed Lines Are For 0300LST, 0900LST, And 1500LST, Respectively=175,190,1

Fig. 2.12. PPI Images At Elevation 2.0° Of (A) Radar Reflectivity (B) Radial Velocity At 0720 LST 5 Feb. 2004. The Interval Between Two Range Circles Is 20 Km=176,191,1

Fig. 2.13. Same As Fig. 2.12. Except For 0810 LST 5 Feb. 2004=178,193,1

Fig. 2.14. Same As Fig. 2.12. Except For 0850 LST 5 Feb. 2004=179,194,1

Fig. 2.15. RHI Images Along The Azimuth Angle 162° Of (A) Radar Reflectivity (B) Radial Velocity At 0808 LST 5 Feb. 2004=180,195,1

Fig. 2.16. Velocity Azimuth Displays At The Elevation Angle 2.0° And Height 500m : At (A) 0720 LST, (B) 0810 LST And (C) 0900 LST 5 Feb. 2004=182,197,1

Fig. 2.17. Time-Height Cross Sections Of (A) Wind Speed (m/s) And (B) Wind Direction(deg.) From 0720 LST To 1000 LST 5 Feb. 2004=185,200,1

Fig. 2.18. Time-Height Cross Sections Of (A) Reflectivity (dBZ) And (B) Divergence (x10-4 s-1) From 0720 LST To 1000 LST 5 Feb. 2004. The Negative Value Represents The Convergence In Figure(B)=186,201,1

Fig. 2.19. Time-Height Cross Sections Of Vertical Air Velocity(m/s) From 0720 LST To 1000 LST 5 Feb. 2004 The Positive Value Represents The Updraft=187,202,1

Fig. 3.1. Observation Sites Of Raingauge, POSS, AWS, (A) And Other Instruments (B) Used This Obsrvation=190,205,1

Fig. 3.2. (A) POSS Appearance, And (B) Sensing Volume (b) Used The Observation=191,206,1

Fig. 3.3. Comparison Between Observed ND(POSS) And Gunn And Marshall(G-M) Nd From 3 To 7 Feb. 2004=194,209,1

Fig. 3.4. The Comparison Of The DSDs Characteristics Between POSS' Curve And Fitted Distribution Obtained By Least Square Method From 3 To 7 Feb. 2004=196,211,1

Fig. 3.5. Comparison Between Observed ND(POSS) And Gamma Distribution From 3 To 7 Feb. 2004=199,214,1

Fig. 3.6. Comparison Of Fall Velocity Between Snowfall And Rainfall By Uyeda And Yagi(1979), Gunn And Kinnzer(1949), And Atlas et. al.(1973)=202,217,1

Fig. 3.7. The Z-R Relationship Based On Total Snowfall Size Distribufion Obtained By POSS From 3 To 7 Feb. 2004=203,218,1

Fig. 3.8. Doppler Radar And POSS, Station And The Size Of A Pixel Used For The Calculation Of Radar Reflectivity=204,219,1

Fig. 3.9. The Displays Of POSS Monitor 5 And 6 Feb. 2004=207,222,1

Fig. 3.10. The Comparison Between Snowfall Rate By AWS, POSS And Four Z-R Relationships=208,223,1

Fig. 3.11. International Classification System Of Snow Particles And Classification Of Snow Particles By Nakaya(Snow Crystal :Natural And Artificial, 1954)=209,224,1

Fig. 3.12. Belhet Method And Replica Method For Measurement Of Snow Particles=210,225,1

Fig. 3.13. The Samples Of Snow Particles Using Belbet Method On 2300 LST 5 Feb. And 2300 LST 6 Feb. 2004=211,226,1

Fig. 3.14. The Sample Of Snow Particles Using Replica Method 27 Jan 2002=212,227,1

Fig. 3.15. The Sample Of Snow Particles Using Belbet Method From Feb. 3 (A) To Feb. 7 (B) on 2004=214,229,1

Fig. 3.16. PPI Images At (a) 0930 LST 3, (B) 0500 LST 5, (C) 2200 LST 5, (D) 0600 LST 6, (E) 2000 LST6, And (F) 0600 LST 7 Feb. 2004=215,230,1

Fig. 4.1. Schematic Representation Of Cloud Band Structure Developed On This Study Case. The Horizontal Thick Arrows Indicate The North-Westerly Wind Relative To The Surrounding Wind Outside Of The Cloud System. And Indicate Particles. The Thick Line Indicates Strong Echo, And The Dotted Line Indicates That Wind Direction Is About 315°=219,234,1

칼라목차

jpg

Fig 3.3.6. Distribution Of Rainfall Drop Size On 07LST 4 Jul. 2004 At Haenam=21,36,1

Fig 3.3.12. GOES-9 Composite Image And Radar Refiectivity On 09 LST 3 Jul. 2004=27,42,1

Fig 3.3.13. The Same As Fig. 3.3.12 Except On 10 LST 3 Jul. 2004=28,43,1

Fig 3.3.14. The Same As Fig. 3.3.12 Except On 11 LST 3 Jul. 2004=29,44,1

Fig 3.3.15. The Same As Fig. 3.3.12 Except On 12 LST 3 Jul. 2004=29,44,1

Fig 3.3.16. The Same As Fig. 3.3.12 Except On 13 LST 3 Jul. 2004=30,45,1

Fig 3.3.17. The Same As Fig. 3.3.12 Except On 14 LST 3 Jul. 2004=31,46,1

Fig 3.3.18. The Same As Fig. 3.3.12 Except On 15 LST 3 Jul. 2004=32,47,1

Fig 3.3.19. The Same As Fig. 3.3.12 Except On 17 LST 3 Jul. 2004=33,48,1

Fig 3.3.20. The Vertical Cross Section Of Radar Reflectivity And Analyses Of Dual Doppler On 1430 LST 3 Jul. 2004=34,49,1

Fig 4.1.6. Rain Rates Using (A) TRMM/GSP, (B) Stratiform Method(Z=200R(1.6)) And (C) WPMM At 5 C-Band Radars, (D) Stratiform Method And (E) WPMM At 2 S-Band Radars On 0640 LST 4 Jul. 2004(이미지 참조)=49,64,1

Fig 4.1.11. Same As Fig. 4.1.6 Except 1150 LST 07 Jul. 2004=55,70,1

Fig 4.2.9. AWS And VSRF Rainband=74,89,1

Fig 5.1.2. The Simulated Wind Field Of (A) Speed, (B) Direction, And.(C) The Radial Velocity At The View Of Zero Elevation Angle=88,103,1

Fig 5.1.3. The Retrieved Wind Field Using VVP Method From The Simulated Wind.: (A) Muan, (B) Youngjodo, (C) Gwangduksan, And (D) Jindo Radars At The Height Of 2.5 And 5Km=88,103,1

Fig 5.1.8. The Wind Field Of Haenam Wind Profiler And The Horizontal Wind Of Muan Radar Retrieved By VVP Method On 2100 LST 19 Jun. 2004: (A) The Wind Of Haenam Wind Profiler, And The Horizontal Wind Of Muan Radar At The Height Of (B) 1.0 Km, (C) 2.0 Km, (D) 3.0 Km, (D) 4.0 Km, And (E) 5.0 Km=93,108,1

Fig 5.2.9. CAPPI Of Reflectivity And Horizontal Wind At The Height Of 3 Km=110,125,1

Fig 5.2.10. Vertical Cross-Sections(Bb') Of Fig. 5.2.9: (A) Vertical Velocity And Reflectivity, (B) Wind Speed And Direction, (C) Vertical Wind Shear And Horizontal Divergence, And (D) Reflectivity And Gorizontal Wind=110,125,1

Fig 5.2.14. Vertical Cross-Sections(Aa') Of Fig. 5.2.13: (A) Vertical Velocity And Reflectivity, (B) Wind Speed And Direction, (C) Vertical Wind Shear And Horizontal Divergence, And (D) Reflectivity And Horizontal Wind On 2200 LST 22 Jul. 2003=114,129,1

Fig 5.2.15. Same As Fig. 5.2.14 Except On 2230 LST 22 Jul. 2003=115,130,1

Fig 5.2.16. Same As Fig. 5.2.14 Except On 2320 Lsi 22 Jul. 2003=116,131,1

Fig 5.2.17. Same As Fig. 5.2.14 Except On 0000 LST 23 Jul. 2003=116,131,1

Fig 5.2.18. The Reflectivity And Streamlines Of Flow Relative To The Moving System On 0000 LST 23 Jul. 2003=117,132,1

Fig. 3.14. The Sample Of Snow Particles Using Replica Method 27 Jan 2002=212,227,1

Fig. 3.15. The Sample Of Snow Particles Using Belbet Method From Feb. 3 (A) To Feb. 7 (B) on 2004=214,229,1

이용현황보기

연구용 도플러 기상 레이더 운영 및 자료분석 기술 개발. 4 이용현황 표 - 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0001077166 551.6353 ㄱ488ㅇ v.4 서울관 서고(열람신청 후 1층 대출대) 이용가능