권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
[표제지 등]=0,1,2
제출문=1,3,2
보고서 초록=3,5,2
요약문=5,7,10
목차=15,17,2
제1장 개요=17,19,2
제2장 국내외 기술개발 현황=19,21,3
제3장 세라믹스 역학특성 평가 기술 확립=22,24,1
제1절 굽힘강도=22,24,10
제2절 알루미나 굽힘 강도 국제공동 시험=32,34,21
제3절 파괴인성=53,55,13
제4절 크립=66,68,10
제5절 침식=76,78,23
제6절 주기피로=99,101,13
제7절 마모 특성 평가 기술=112,114,10
제4장 세라믹스 역학특성 향상 기술 개발=122,124,1
제1절 균열 치유 기술=122,124,17
제2절 세라믹스의 표면 강화 기술=139,141,12
제3절 알루미나의 원심 성형, 미세구조 및 역학 특성=151,153,20
제5장 목표달성도 및 관련분야에의 기여도=171,173,2
제6장 연구개발결과의 활용계획=173,175,2
특정연구개발사업 연구결과 활용계획서=175,177,19
영문목차
[title page etc.]=0,1,12
Summary=11,13,3
Contents=14,16,3
Chapter1. Outline=17,19,2
Chapter2. The State Of The Art=19,21,3
Chapter3. Establishment Of Mechanical Testing Techniques For Ceramics=22,24,1
1. Flexural Strength=22,24,10
2. Clobal Round Robin Test On Flexural Strength Of Alumina=32,34,21
3. Fracture Toughness=53,55,13
4. Creep=66,68,10
5. Erosion=76,78,23
6. Cyclic Fatigue=99,101,13
7. Micro-Tribology=112,114,10
Chapter4. Technigues To Enhance MechanIcal Properties Of Ceramics=122,124,1
1. Crack Healing In Ceramics=122,124,17
2. Surface Strengthening Of Ceramics=139,141,12
3. Centrifugal Casting. Microstructure And Property Of Alumina=151,153,20
Chapter5. Degree Of Goal Achievement And Impacts=171,173,2
Chapter6. Plan Of The Use Of Results=173,175,21
jpg
Fig. 2-1. Microstructure Of Alumina Used In The RRT=36,38,1
Fig. 3-1. Specimens For Fracture Toughness Testing. Through-crack, Semi-Rllitical Surface Crack And Through-Notch Is Used For SEPB, SCF And SEVNB Testing, Respectively=54,56,1
Fig. 4-2. Alumina Specimen By Old Design And Siliconized Silicon Carbide Specimen By New One=69,71,1
Fig. 5-3. Impingement Angle Dependence Of Erosion Rate at Room Tenperature (●) And 900℃ (○): V= 70 ms-1.(이미지 참조)=83,85,1
Fig. 5-4. SEM Micrographs Of A Typical Surface Eroded At 900℃ (1000X): V=70ms-1; Impingement Angle 90˚.(이미지 참조)=83,85,1
Fig. 5-9. SEM Micrographs Of Typical Surfaces Eroded At: a) 22℃ For V= 8ms-1;b) 22℃ For V= 100ms-1;c) 900℃ For V=28ms-1.(이미지 참조)=87,89,1
Fig. 5-12. Impingement Angle Dependence Of Erosion Rate At Room Temperature (●) And 900℃ (▽): V= 70ms-1.(이미지 참조)=90,92,1
Fig. 6-2. Photograph Of Experimental Apparatus=101,103,1
Fig. 6-3. Cyclic Fatigue Crack Path=102,104,1
Fig. 6-5. Crack Bridging Observed Along Crack Path=105,107,1
Fig. 7-1. Schematic Of The Micro Wear Tester. Friction Force And Wear Depth Caused By Linear Movement Of Specimen Were Gotten Through The Torque Cell And The Fiber Optic Sensor=112,114,1
Fig. 7-2. Micro Wear Tester, Showing Captions Of It's Parts=113,115,1
Fig. 7-3. Photograph Of A Diamond Trip With 100 Um Bar. Radius Of The Tip Is About 15 Um=114,116,1
Fig. 7-5. Scratch Test Result Of SOA356 And SOA357=116,118,1
Fig. 7-6. Friction Force And Displacement Of SOA356 And SOA357 From The Micro-Wear Tester=116,118,1
Fig. 7-7. Wear Test Result Of SOA356 At 5 mN And 10 mN=117,119,1
Fig. 1-1. FESEM Microstructures Of Cracked Specimens (a) Before Heat-Treatment, (b) After Heat Treatment In Air At 100℃ For 50 h And (C) After Heat Treatment At 1300℃ For 50 h=124,126,1
Fig. 1-2. EDX Analysis Across The Healed Crack In A Specimen Heat-Treated At 1300℃ In Air=125,127,1
Fig. 1-3. Change Of Strength As A Function Of Heat-treatment Temperature=126,128,1
Fig. 1-4. Optical Micrograth Of A Fracture Path In A Specimen Heat-Treated At 1300℃ In Air. Before Fracturing, The Trace Of Vickers Indentation was Removed By Polishing=126,128,1
Fig. 1-6. Microstructure Of RBSC Used In The Experiments=129,131,1
Fig. 1-7. Crack Morphology In Specimens Heat-trested At (a) 800℃, (b) 1000℃ And (c) 1200℃, For 50 h=130,132,1
Fig. 1-8. EDX Analysis Across A Crack In A Specimen Heat-Treated At 1300℃=131,133,1
Fig. 1-9. TEM Micrograph Of A Crack In Specimen Heat-treated At 1300℃=132,134,1
Fig. 1-10. Change Of Strength As A Function Of Heat-Treatment Temperature. Error Bars Represent One Standard Deviation=132,134,1
Fig. 1-11. Crack Morphology Before (a) And After (b) Borosilicate Glass Was Penetrated=135,137,1
Fig. 2-1. Microstructure Of (a) Interior And (b) Surface Region Of A Glass Penetrated Alumina Specimen=141,143,1
Fig. 2-2. TEM Micrographs Of (a) Interior Region And (b) Glass-Penetrated Surface Region=142,144,1
Fig. 2-4. Vickers Indentation Made On The Surface Region Of The Cross-section Of A Glass-penetrated Specimen. Note Cracks Only In The Direction Parallel To Specimen Surface=144,146,1
Fig. 2-5. TEM Micrograph Of A Glass-penetrated Specimen After The Glass Being Crystallized. In Was Confirmed By SAD That Second Phase Along Grain Boundaries Or Triple Grain Junctions Were Crystalline=145,147,1
Fig. 2-8. Surface Of Alumina Specimen After Quenching Into Water From A Temperature Higher Than Critical Temperature. Note Cracks. Dye Was Penetrated Into Cracks To Facilitate To Observe Them=147,149,1
Fig. 2-9. Microstructure Of Surface Region Of The Cross-section Of A Glass-penetrated Zirconia=148,150,1
Fig. 2-10. Weibull Plot Of Strength Data For As-received Zirconia And Glass-penetrated Zirconia=148,150,1
Fig. 3-2. Microstructure Of Alumina Bilayer After Singternig At 1650℃ For (a) 30 Min And (b) 4 h For AES-11 Powder=153,155,1
Fig. 3-3. Microstructure Of The (a) Outer And (b) Inner Surface Of a Green Tube=154,156,1
Fig. 3-4. Microstructure Of Alumina Bilayer Fabricated From High Purity Powder (AKP 50 Powder) After Sintering At 1650 ℃ For 2 h. Note No Abnormal Grain Growth At The Interface Between Layers=155,157,1
Fig. 3-5. Microstructure Of Alumina Bilayer Fabricated From (a) commercial Powder And High Purity Powder For The First And Second Layer, respectively, And (b) High Purity Powder And Commercial Powder For The First And Second Layer, Respertively=155,157,1
Fig. 3-6. Microstructure Of Alumina Bilayer Fabricated From Commercial Purity Powder After Fractionation-out Of Coarse Particles(Aggregates). Note No Abnormal grain Growth Or Porous Region=156,158,1
Fig. 3-8. Microstructure Of Specimens Obtained From Fine Portion Of a Commercial Purity Powder By Hot Pressing For (a) 0.5 h, (b) 2 h And (c) 6 h=158,160,1
Fig. 3-10. Microstructure Of Specimens Obtained From Coarse Portion Of A Commercial Purity Powder (AES-11) By Hot Pressing For (a) 0.5 h, (b) 2 h And (c) 6 h=160,162,1
Fig. 3-11. Microstructure Of Specimens Obtained By Hot Pressing For 2 h from (a) High Purity Powder And (b) The Mixture Of 70% High Purity Powder And 30% Coarse Powder=161,163,1
Fig. 3-12. Particle Size Distribution Of (a) Fine And (b) Coarse Portions Of Various Commercial Powers=163,165,1
Fig. 3-13. Microstructure Of Specimens For Coarse Portions Of Powders (a) P-0, (b) P-400, (c) P-1000, After Hot Pressing For 2 h=165,167,1
Fig. 3-14. Microstructure Of Specimens For Coarse Portions Of Powders (a) P-0, (b) P-400, (c) P-1000 And (d) P-1100, After Hot Pressing For 2 h=166,168,1
Fig. 3-15. Microstructure Of Bilayer Specimens Fabricated By Repeated Centrifugal Casting From Powder P-400 After Sintering For (a) 0.5 h, (b) 1 h And (c) 2 h=167,169,1
Fig. 3-16. Microstructure Of Bilayers Fabricated From (a) Powder P-0 And (b) Powder P-1100=168,170,1
Fig. 3-17. Weibull Plot Of Fleuxral Sterngth Data OF Alumina Fabricated From A Commercial Purity Powder After Reducing Impurities By Fraction-out Of Aggregates And Wathing-out By Treatment In Acidic Water=168,170,1
등록번호 | 청구기호 | 권별정보 | 자료실 | 이용여부 |
---|---|---|---|---|
0001080843 | 620.14 ㄱ373ㅅ | v.2 | 서울관 서고(열람신청 후 1층 대출대) | 이용중 |
0001080844 | 620.14 ㄱ373ㅅ | v.2 | 서울관 서고(열람신청 후 1층 대출대) | 이용중 |
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.