본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

[표제지 등]=0,1,2

제출문=i,3,1

보고서 초록=ii,4,1

요약문=iii,5,14

목차=xvii,19,2

제1장 연구개발의 개요=1,21,2

제2장 국내외 기술개발 현황=3,23,1

제1절 연구개발의 경제ㆍ사회ㆍ기술적 중요성=3,23,2

제2절 지금까지의 연구개발 실적=5,25,1

제3절 현기술상태의 취약성=5,25,1

제4절 앞으로의 전망=6,26,1

제3장 연구개발수행 내용 및 결과=7,27,1

제1절 연구개발의 이론적 실험적 접근방법=7,27,6

제2절 산화분위기 875℃ 소성용 유전체조성 및 첨가제 개발=13,33,48

제3절 계면 반응 및 수축율 제어를 통한 전극과의 Matching 기술개발=61,81,12

제4절 내환원성 저온소성유전체 조성 및 첨가제 개발=72,92,41

제5절 이방성수축, 계면반응제어기술개발을 통한 Cu 전극과의 Matching=113,133,11

제6절 칩 제조공정 기술개발=123,143,36

제7절 Prototype Chip 시작품 제작, 평가=159,179,18

제4장 목표달성도 및 관련분야에의 기여도=177,197,1

제1절 연구개발 목표 달성도=177,197,10

제2절 연구개발 대외 기여도=186,206,3

제5장 연구개발 결과의 활용계획=189,209,1

제1절 개발 기술의 활용계획=189,209,6

제2절 연구 개발의 활용가능성=194,214,2

제6장 연구개발과정에서 수집한 해외과학기술정보=196,216,1

제1절 Glass-Free Low-Temperature Cofired Ceramics=196,216,26

제2절 저온소결에서의 미세구조와 유전 특성과의 연관성=221,241,8

제3절 Low-Temperature Cofired Ceramics With High-K=229,249,11

제7장 참고문헌=240,260,5

Table List=245,265,2

Figure List=247,267,14

특정연구개발사업 연구결과 활용계획서=261,281,1

[첨부1] 연구결과 활용계획서=262,282,11

[첨부2] 기술 요약서=273,293,6

자체평가의견서=279,299,8

영문목차

[title page etc.]=0,1,10

Summary=ix,11,6

Contents=xv,17,4

Chapter 1. Introduction=1,21,2

Chapter 2. Present Conditions Of Technical Development In Domestic And Foreign Country=3,23,1

Section 1. Economic, Social, And Technical Importance Of Research And Development=3,23,2

Section 2. Recent Actual Results Of Research And Development=5,25,1

Section 3. Fragility Of Recent Technical Condition=5,25,1

Section 4. Future View=6,26,1

Chapter 3. Contents And Results Of Research And Development=7,27,1

Section 1. Theoretical And Experimental Approach Of Research And Development=7,27,6

Section 2. Development Of Dielectric Ceramic Compositions And Additive For Firing At 875℃ In Air=13,33,48

Section 3. Development Of Matching Between Different Materials Along With Control Of Interfacial Reaction And Shrinkage=61,81,12

Section 4. Development Of Dielectric Ceramic Compositions And Additive For Firing At 900℃ In Reducing Atmosphere=72,92,41

Section 5. Development Of Matching With Cu Electrode And Ceramics Through Control Of Interfacial Reaction And Shrinkage=113,133,11

Section 6. Development Of Chip Fabrication Technique=123,143,36

Section 7. Fabrication And Test Of Chip Prototypes=159,179,18

Chapter 4. Attainment And Outside Contributions Of Research And Development=177,197,1

Section 1. Attainment Of Research And Development=177,197,10

Section 2. Outside Contributions Of Research And Development=186,206,3

Chapter 5. Practical Application Plans And Possibility Of Research And Development Results=189,209,1

Section 1. Practical Application Plans Of Developed Techniques=189,209,6

Section 2. Practical Application Possibility Of Research And Development Results=194,214,2

Chapter 6. The Collected Overseas Scientific & Technological Information Through The R&D=196,216,1

Section 1. Glass-Free Low Temperature Cofired Ceramics=196,216,26

Section 2. Microstructural Phenomena In Low-Firing Ceramics=221,241,8

Section 3. Low Temperature Cofired Ceramics With High K=229,249,11

Chapter 7. Reference=240,260,5

Table List=245,265,2

Figure List=247,267,40

표목차

Table 3-2-1. Sintering And Dielectric Characteristics Of Pyro-Phosphates=20,40,1

Table 3-2-2. Temperature Coefficient Of (1-x)Ca₂P₂O7-xTiO₂(이미지 참조)=27,47,1

Table 3-2-3. Phase Present In The (1-x)Zn₃Nb₂O8-xTiO₂ System (0≤x≤1)(이미지 참조)=29,49,1

Table 3-2-4. The Microwave Dielectric Properties Of Phase Present In The (1-x)Zn₃Nb₂O8-xTiO₂System(이미지 참조)=30,50,1

Table 3-2-5. Dielectric Properties Of Ba5Nb₄O15 Ceramics(이미지 참조)=39,59,1

Table 3-2-6. Melting Temperatures Of (1-x)Cu₃Nb₂O8-xZn₃Nb₂O8 Samples(이미지 참조)=43,63,1

Table 3-2-7. Shrinkage And Bulk Density Of L5 Bulk Samples And Laminated Tapes=46,66,1

Table 3-2-8. Microwave Dielectric Properties Of L5 Samples=49,69,1

Table 3-2-9. Sintering And Microwave Dielectric Properties Of Ca₂P₂O7 With Dopants(이미지 참조)=51,71,1

Table 3-2-10. Sintering And Microwave Dielectric Properties Of 0.6Ca₂P₂O7-0.4TiO₂ With Dopants(이미지 참조)=51,71,1

Table 3-2-11. Sintering And Microwave Dielectric Properties Of xZn₃Nb₂O8-(1-x)TiO₂ With Dopants(이미지 참조)=52,72,1

Table 3-2-12. Compositions And Dielectric Properties Of LTCC Compositions=60,80,1

Table 3-3-1. Used Glasses And Ag Paste In Experiment=62,82,1

Table 3-3-2. Composition Of Organic Vehicles In Ag-, Ceramic Paste=70,90,1

Table 3-4-1. Shrinkage Of Ba5Nb₄O15 And BaNb₂O6 With Additives, As A Function Of Sintering Temperature. (In Reducing Atmoshpere)(이미지 참조)=84,104,1

Table 3-4-2. Relative Theoretical Density Of BT4 With Glass Frit Sintered At 950℃ For 2h In Po₂= 10-8 Atm(이미지 참조)=90,110,1

Table 3-4-3. Microwave Dielectric Properties Of MgTi₂O5 And Mg₂TiO₃(이미지 참조)=103,123,1

Table 3-4-4. Microwave Dielectric Properties Of MgTi₂O5 With Xwt.% LBS(이미지 참조)=104,124,1

Table 3-6-1. Lamination Result As A Function Of Temperature And Pressure=140,160,1

Table 3-6-2. Specimen Thickness vs. Binder Burn-Out Time=145,165,1

Table 3-6-3. Specimen As Function Of Burn-Out Temperature And Time=147,167,1

Table 3-6-4. Binder Burnout Behavior As Function Of Specimen Area=149,169,1

Table 3-6-5. Variation Of The Printed Line Width As A Function Of Paste Viscosity And Snap-Off=151,171,1

Table 3-6-6. Commercial Viahole Filling Paste Spec=156,176,1

Table 3-7-1. Microwave Dielectric Characteristics Of Ferro L5 Tapes Cofired With Ag Paste=161,181,1

Table 3-7-2. Microwave Dielectric Characteristics Of Ba-Nb-O Tapes Cofired With Ag Paste=163,183,1

그림목차

Fig. 3-2-1. XRD Pattern Of Calcined Pyro-Phosphates=13,33,1

Fig. 3-2-2. Shrinkage Curve Of Pyro-Phosphates=14,34,1

Fig. 3-2-3. Shrinkage Rate Curve Of Pyro-Phosphates=15,35,1

Fig. 3-2-4. SEM Image Of (a)Ca₂P₂O7, (b)Sr₂P₂O7, (c)Ba₂P₂O7, (d)Zn₂P₂O7, And (e)Mg₂P₂O7(이미지 참조)=15,35,1

Fig. 3-2-5. XRD Pattern Of Sintered Pyro-Phosphates=16,36,1

Fig. 3-2-6. Dielectric Constant Of Pyrophosphates As A Function Of Cation Radius=17,37,1

Fig. 3-2-7. Qxf Of Pyrophosphates As A Function Of Cation Radius=18,38,1

Fig. 3-2-8. TCC Of (a) Ca₂P₂O7, Sr₂P₂O7, (b) Ba₂P₂O7, (c) Zn₂P₂O7, (d) Mg₂P₂O7(이미지 참조)=19,39,1

Fig. 3-2-9. XRD Patterns Of Sintered (1-x)Ca₂P₂O7-xTiO₂(이미지 참조)=21,41,1

Fig. 3-2-10. Shrinkage And Shrinkage Rate Of (1-x)Ca₂P₂O7-xTiO₂(이미지 참조)=22,42,1

Fig. 3-2-11. Shrinkage Curve Of α-0.6Ca₂P₂O7-0.4TiO₂, β-0.6Ca₂P₂O7-0.4TiO₂(이미지 참조)=23,43,1

Fig. 3-2-12. Relative Density Of (1-x)Ca₂P₂O7-xTiO₂ As Function Of x(이미지 참조)=23,43,1

Fig. 3-2-13. SEM Image (x10,100) Of (1-x)Ca₂P₂O7-xTiO₂(이미지 참조)=24,44,1

Fig. 3-2-14. Permittivity Of (1-x)Ca₂P₂O7-xTiO₂ As A Function Of x (klog : Logarithm Mixing Rule, Kparallel : Parallel Mixing Rule, Kseries : Series Mixing Rule, Kexp = Measured Value, KB = Value Without Porosity Effect)(이미지 참조)=25,45,1

Fig. 3-2-15. TCF Of (1-x)Ca₂P₂O7-xTiO₂ As A Function Of x. (Tcfexp : Measured Value, Tcfcal : Calculated Value)(이미지 참조)=26,46,1

Fig. 3-2-16. Qxf Of (1-x)Ca₂P₂O7-xTiO₂ As A Function Of x. (Qxfexp : Measured Value, Qxfcal : Calculated Value)(이미지 참조)=27,47,1

Fig. 3-2-17. XRD Patterns Of The (1-x) Zn₃Nb₂O8-xTiO₂ Samples Sintered At 1200℃ For 2h [1:Zn₃Nb₂O8, 2:ZnNb₂O6, 3:Zn₂TiO₄, 4:ZnTiNbO8, 5:TiO₂, And *:(040) Superlattice Reflection Of Columbite](이미지 참조)=28,48,1

Fig. 3-2-18. The Microwave Dielectric Properties Of The (1-x)Zn₃Nb₂O8-xTiO₂ System(이미지 참조)=30,50,1

Fig. 3-2-19. Comparison Between Microwave Dielectric Properties Measured And Calculated From The Samples In The Mixture Region Of TiO₂, Zn₂TiO₄, And ZnTiNbO8(이미지 참조)=31,51,1

Fig. 3-2-20. XRD Patterns Of The Mixture Samples And Sintered At 1200℃ For 2 h:x=(a)0.71, (b) 0.72, (c) 0.725, (d) 0.73, (e) 0.74, (f) 0.75=32,52,1

Fig. 3-2-21. Relative Integrated Intensities Of The TiO₂(110), Zn2TiO₄ (220), And ZnTiNb₂O8 (111) Of The Mixture And Sintered Samples (T:TiO₂, ZT : Zn2TiO₄, ZTN : ZnTiNb₂O8)(이미지 참조)=33,53,1

Fig. 3-2-22. XRD Patterns Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples Sintered At 1250℃ For 2 h(이미지 참조)=34,54,1

Fig. 3-2-23. Shrinkage Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples(이미지 참조)=35,55,1

Fig. 3-2-24. SEM Micrographs Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples Sintered At 1250℃ For 2 h; x= (a) 0, (b) 1/3, (c) 2/3, (d) 7/9, (e) 29/36, And (f) 1(이미지 참조)=36,56,1

Fig. 3-2-25. (a) And (b) Bright-Field Image TEM Micrographs Of The 1/6Ba5Nb₄O15-5/6BaNb₂O6 Sintered At 1250℃ For 2 h, EDS Spectra Of The Phase Marked By (c) 1 And (d) 2(이미지 참조)=37,57,1

Fig. 3-2-26. Relative Integral Intensities Of BaNb₂O6 In (1-x)Ba5Nb₄O15-xBaNb₂O6 Mixtures As A Function Of BaNb₂O6 Content(이미지 참조)=37,57,1

Fig. 3-2-27. Bulk Density And Relative Theoretical Densities Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1200-1300℃ For 2 h(이미지 참조)=38,58,1

Fig. 3-2-28. Microwave Dielectric Properties Of (1-x)Ba5Nb₄O15-xBa5Nb₄O6 System(이미지 참조)=40,60,1

Fig. 3-2-29. Shrinkage And Shinkage Rate Of The 0.5TiO₂-0.5CuO Mixture Sample As A Function Of Temperature=41,61,1

Fig. 3-2-30. DTA Curve Of TiO₂-CuO Mixture Samples=41,61,1

Fig. 3-2-31. Shrinkage And Shrinkage Rate Of Cu₃Nb₂O8 And Zn₃Nb₂O8 Samples As A Function Of Temperature(이미지 참조)=42,62,1

Fig. 3-2-32. Bulk Density Of Li₂O-B₂O₃-SiO₂ (Al₂O₃) System=44,64,1

Fig. 3-2-33. Particle Size Of Glass Frit As A Function Of Milling Time=45,65,1

Fig. 3-2-34. Shrinkage Of ZnO-B₂O₃ Glass Samples Showing Tg=45,65,1

Fig. 3-2-35. Sintering Profile Of L5 Samples=46,66,1

Fig. 3-2-36. XRD Patterns Of L5 Bulk Samples As A Function Of Sintering Temperature=47,67,1

Fig. 3-2-37. SEM Micrographs (Etched And Fracture Surface) Of Bulk Samples (a) Sintered At 850℃, (b) 900℃, And Tapes (c) Sintered At 850℃, (d) At 900℃=47,67,2

Fig. 3-2-38. Relative Dielectric Constant Of L5 Samples Sintered At 850 And 900℃=48,68,1

Fig. 3-2-39. Temperatures Coeffcient Of Capacitance Of L5 Tapes=49,69,1

Fig. 3-2-40. EDS Line Scanning Of L5 Tape Cofired With Ag Paste At 900℃ For 10 Min=50,70,1

Fig. 3-2-41. SEM Micrographs Of 0.24Zn₃Nb₂O8-0.76TiO₂ With CuO And Ag₂O Sintered At 875℃ For 2 h(이미지 참조)=53,73,1

Fig. 3-2-42. Shrinkage Of BaNb₂O6 And Ba5Nb₄O15 With Additives, As A Function Of Sintering Temperature(이미지 참조)=54,74,1

Fig. 3-2-43. Bulk Densities And Relative Theoretical Densities Of (a) BaNb₂O6 And (b) Ba5Nb₄O15 Samples Sintered At 875-925℃ For 2 h, As A Function Of Additive Content(이미지 참조)=55,75,1

Fig. 3-2-44. (a) And (b) Bright-Field Image TEM Micrographs of The 0.85Ba5Nb₄O15-0.15BaNb₂O6 Samples With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 900℃ For 2 h (Inset Is A SAD Pattern Of The Intergranular phase). (c) EDS Analysis Of The Intergranular Phase In (b)(이미지 참조)=56,76,1

Fig. 3-2-45. XRD Pattern Of Ba5Nb₄O15 And BaNb₂O6 With B₂O₃ Samples Sintered At 925℃ For 2 h(이미지 참조)=57,77,1

Fig. 3-2-46. Quality Factor And Relative Dielectric Constant Of (1-x)Ba5Nb₄O15-xBaNb₂O6 With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 900℃ For 2 h(이미지 참조)=59,79,1

Fig. 3-2-47. Temperature Dependence Of Resonant Frequency (1-x)Ba5Nb₄O15-xBaNb₂O6 With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 900℃ For 2 h(이미지 참조)=59,79,1

Fig. 3-3-1. Microwave Dielectric Properties Of BaTi₄O9 Added 5wt% Zinc Borate From 1:1 To 2:1 Ratio Of ZnO :B₂O₃(Sintering At 950℃)(이미지 참조)=61,81,1

Fig. 3-3-2. XRD Of BaTi₄O9 : Ag Paste = 1:1 Sample Of Heat Treatment At 900℃ And Pure BaTi₄O9 At 1200℃ For Comparison(이미지 참조)=63,83,1

Fig. 3-3-3. EDS Line Scanning Of (a) LBA361, (b) LB46, (c) LBS361, (d) ZB55, (e) ZB64 Printed Ag Paste Of A Company=63,83,2

Fig. 3-3-4. EPMA Of (a) LBA361, (b) ZB55=64,84,2

Fig. 3-3-5. XRD Of Heat Treatment Of Glasses : Ag Powder = 1:1 At 900℃ And Heat Treatement Of Glasses At 900℃=65,85,2

Fig. 3-3-6. SEM Image Of (a) Center And (b) Interface Of BT4+5wt% LBA361=67,87,1

Fig. 3-3-7. EDS Line Scanning Between BT4+5wt% LBA361 And Ag Paste Of (a) A, (b) B, (c) C, (d) D=67,87,2

Fig. 3-3-8. Ferro L5 Laminated Tapes Cofired With Ag Paste Sintered At 900℃ For 10min. (a) A, (b ) B, (c) C Paste=69,89,1

Fig. 3-3-9. Ferro L5 Laminated Tapes Cofired With Ag Paste Sintered At 900℃ For 10min=70,90,1

Fig. 3-3-10. Ferro L5 Laminated Tapes Cofired With Ceramic Paste Sintered At 900℃ For 10 min=70,90,1

Fig. 3-3-11. Camber Test Of LTCC-Silver Paste=71,91,1

Fig. 3-3-12. SEM Micrographs Of Ceramic-Outer Electrode After Soldering=72,92,1

Fig. 3-4-1. XRD Patterns Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples Sintered At 1250℃ For 2 h(이미지 참조)=73,93,1

Fig. 3-4-2. Bulk Densities And Relative Theoretical Densities Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1250℃ For 2 h, As A Function Of Oxygen Partial Pressure.(x=0, 5/6, 1)(이미지 참조)=74,94,1

Fig. 3-4-3. SEM Micrographs Of 1/6Ba5Nb₄O15-5/6BaNb₂O6 Sintered At 1250℃ For 2 h; (a) Po₂=10-8 Atm And (b) Po₂=10-12 Atm(이미지 참조)=75,95,1

Fig. 3-4-4. Quality Factor (Qxf) Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1250℃ For 2 h, As A Function Of Oxygen Partial Pressure. (x=0, 5/6, 1)(이미지 참조)=76,96,1

Fig. 3-4-5. XRD Patterns Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1250℃ For 2 h, As A Function Of Oxygen Partial Pressure. (x=0, 5/6, 1)(이미지 참조)=77,97,2

Fig. 3-4-6. Raman Spectra Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1250℃ For 2 h, As A Function Of Oxygen Partial Pressure. (x = 0, 5/6, 1)(이미지 참조)=79,99,1

Fig. 3-4-7. Raman Spectra Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sintered At 1250℃ For 2 h, As A Function Of Oxygen Partial Pressure. (x = 0, 5/6)(이미지 참조)=80,100,1

Fig. 3-4-8. Isothermal Conductivity Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples As A Function Of Oxygen Partial Pressure. (x = 0, 5/6, 1)(이미지 참조)=81,101,1

Fig. 3-4-9. XPS Spectra Of BaNb2O6 Samples As A Function Of Oxygen Partial Pressure(이미지 참조)=83,103,1

Fig. 3-4-10. Shrinkage Behaviors Of (1-x)Ba5Nb₄O15-xBaNb₂O6(이미지 참조)=85,105,1

Fig. 3-4-11. XRD Patterns Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Samples With 0.3 wt% B₂₃ And 0.3 wt% V₂O5 Sintered At 950℃ For 2 h In Po₂= 10-8 Atm(이미지 참조)=85,105,1

Fig. 3-4-12. Backscatterd Electron Image Of 0.84Ba5Nb₄O15-0.16BaNb₂O6 Sample With 0.3wt% B₂O₃ wt% V₂O5 Sintered At 950℃ For 2 h In Po₂=10-8 Atm(이미지 참조)=86,106,1

Fig. 3-4-13. (a) And (b) Bright-Field Image Of TEM Micrographs Of The 0.84Ba5Nb₄O15-0.16BaNb₂O6 Sample With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 950℃ For 2 In Po2=10-8 Atm(Insets Ard SAD Pattern Of The Intergranular Phase), (c) EDS Analysis Of The Integranular Phase In (a) And (b) Content(이미지 참조)=87,107,1

Fig. 3-4-14. Microwave Dielectric Properties Of (1-x)Ba5Nb₄O15-xBaNb₂O6 Sample With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 950℃ For 2 h In Po₂=10-8 Atm, As A Function Of BaNb2O6 Content(이미지 참조)=88,108,1

Fig. 3-4-15. Electrical Conductivity Of 0.85Ba5Nb₄O15-0.15BaNb₂O6 With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 950℃ For 2 h, As A Function Of Oxygen Partial Pressure(이미지 참조)=89,109,1

Fig. 3-4-16. Frequency Dependence On Dielectric Constant Of BT4 With Glass Frit As A Function Of Frit Content And Oxygen Partial Pressure=90,110,1

Fig. 3-4-17. XRD Patterns Of BTZ With ZB Glass Frit As A Function Of Oxygen Partial Pressure. Po₂=(a) 10-9, (b) 10-10, (c) 10-12, And (d) 10-14 Atm(이미지 참조)=91,111,1

Fig. 3-4-18. Microwave Dielectric Properties Of BTZ With 5 wt% ZB Glass As A Function Of Oxygen Partial Pressure=91,111,1

Fig. 3-4-19. Relative And Apparent Density Of 0.9MgTiO₃-0.1CaTiO₃ With LBS Glass Samples As A Function Of The Sintering Temperature=93,113,1

Fig. 3-4-20. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With LBS Glass Samples Sintered At 950℃ For 2h (a) 5, (b) 10, (c) 20 wt.% And TEM Image Of 0.9MgTiO₃-0.1CaTiO₃With 20 wt.% LBS Glass Samples Sintered At 950℃ For 2h With (d) 20 wt.% LBS Glass(이미지 참조)=93,113,1

Fig. 3-4-21. Shrinkage Of 0.9MgTiO₃-0.1CaTiO₃ And 0.9MgTiO₃-0.1CaTiO₃ With LBS Glass Samples As Function Of Temperature=95,115,1

Fig. 3-4-22. XRD Patterns From Lithium Borosilicate Glass Itself Heat Treated At Varying Temperatures=95,115,1

Fig. 3-4-23. XRD Patterns Of 0.9MgTiO₃-0.1CaTiO₃ (a) With 20 wt.% LBS Glass Samples Quenched At 650, 700, 750, 800, 900, 1000℃, (b) With 10 wt.% LBS Glass Samples Quenched At 700, 800℃(이미지 참조)=96,116,1

Fig. 3-4-24. XRD Patterns Of 0.9MgTiO₃-0.1CaTiO₃ With X wt.% LBS Glass Samples Sintered At 1000℃ For 2h(이미지 참조)=97,117,1

Fig. 3-4-25. SEM Micrograph Of 0.9MgTiO₃-0.1CaTiO₃ With 20 wt.% LBS Sintered At 1000℃ For 2h And EDS Results From The Areas Marked In SEM Micrograph: Marked As 'a' (a), 'b' (b), 'c' (c), and 'd' (d)(이미지 참조)=98,118,1

Fig. 3-4-26. Gibbs Free Energy Change For The Decomposition Reactions As A Function Of Reaction Temperature=100,120,1

Fig. 3-4-27. Change In Critical Activity Of MgO And TiO₂ Requrired To Favour The Decomposition Reaction As A Function Of Reaction Temperature(이미지 참조)=100,120,1

Fig. 3-4-28. Microwave Dielectric Properties Of 0.9MgTiO₃-0.1CaTiO₃ Sintered At 1300℃ For 2 h And (Mg0.90Ca0.10)TiO₃ With LBS Glass Samples Sintered At 950, 975, 1000, 1050℃ For 2 h, As A Function Of The Amount Of Glass Frit (a) Permittivity (k), (b) Quality Factor (Qxf), (c) Temperature Coefficient Of Resonant Frequency (τf)(이미지 참조)=102,122,1

Fig. 3-4-29. XRD Patterns Of Pure MgTi₂O5 And With X wt.% LBS Glass Samples Sintered At 1500℃, 950℃ For 2h(이미지 참조)=104,124,1

Fig. 3-4-30. Shrinkage And Apparent Bulk Density Of 0.9MgTiO₃-0.1CaTiO₃ With LBS Glass Samples As A Function Of The Sintering Temperature(이미지 참조)=106,126,1

Fig. 3-4-31. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With 5 wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure; (a) Po₂=0.21atm, (b) Po₂=10-4atm, (c) Po₂=10-10atm, (d) Po₂=10-14atm(이미지 참조)=106,126,2

Fig. 3-4-32. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With 10 wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure; (a) Po₂=0.21atm, (b) Po₂=10-4atm, (c) Po₂=10-8atm, (d) Po₂=10-10atm, (e) Po₂=10-12atm, (f) Po2=10-14atm(이미지 참조)=107,127,1

Fig. 3-4-33. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With Xwt.% LBS Glass Sintered At Po₂=10-10atm 950℃ For 2h ; (a) 5 wt.%, (b) 10wt.%, (c) 20wt.%(이미지 참조)=108,128,1

Fig. 3-4-34. Shrinkage Of LBS Glass In Air And LBS In N₂ Flow Samples As Function Of Temperature(이미지 참조)=109,129,1

Fig. 3-4-35. XRD Patterns Of 0.9MgTiO₃-0.1CaTiO₃ With X wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure(이미지 참조)=109,129,2

Fig. 3-4-36. Microwave Dielectric Properties Of 0.9MgTiO₃-0.1CaTiO₃ With X wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure. (a) Permittivity (k), (b) Quality Factor (Qxf), (c) Temperature Coefficient Of Resonant Frequency (τf)(이미지 참조)=111,131,1

Fig. 3-4-37. Effects Of Oxygen Partial Pressure On The Resistivity Of (Mg0.9Ca0.1)TiO₃ Ceramics Sintered At 950℃ For 2 Hours With Various Amounts Of LB37 Glass(이미지 참조)=112,132,1

Fig. 3-5-1. Photo Of K-Squares=113,133,1

Fig. 3-5-2. Schematic Diagram Of Multiayer Ceramic=114,134,1

Fig. 3-5-3. Shrinkage Data Of Multilayer Tapes Sintered At Various Temperature Along x, y, And z Direction Under 10-10 Atm Of Oxygen Partial Pressure=114,134,2

Fig. 3-5-4. Sintering Shrinkage With A Function Of Lamination Pressure; (a) At 65℃ (b)At 75℃ And (c) 85℃=115,135,1

Fig. 3-5-5. Microstructure Of Ba-Nb-O System Components Which Show The Improved Textures=116,136,1

Fig. 3-5-6. Shrinkage Data Of Various LBxy Glasses=117,137,1

Fig. 3-5-7. Shrinkage Data Of MCT Ceramics With Various Amounts Of LB37 Glass=118,138,1

Fig. 3-5-8. Microstructure Of Interface Between The Cu Paste And The Ceramics; (a) 20 wt% Glass, Commercial Paste, (b) 10 wt% Glass, Our Own Paste Containing 5 wt% Glass=119,139,1

Fig. 3-5-9. X-Ray Diffraction Of 90MCT Ceramics With 10wt% LB37 Glass Sintered At 950℃ For 2 Hours. (Po₂=10-10atm)(이미지 참조)=120,140,1

Fig. 3-5-10. Microstructure Of MCT Ceramic Sintered With Cu=120,140,1

Fig. 3-5-11. Microstructure And EDS Analysis Of MCT Ceramics Co-Fires With Cu Paste=121,141,1

Fig. 3-5-12. XRD Patterns Of Low-Fired Ba5Nb₄O15-BaNb₂O6, BT4, And BTZ Showing Cu Compatibility(이미지 참조)=122,142,1

Fig. 3-5-13. (a) EDS Line Scanning And (b) TEM Micrograph Of Ceramic/Cu Electrode Interface=123,143,1

Fig. 3-6-1. Chip Fabrication Process=123,143,1

Fig. 3-6-2. Sedimentation Test Of (a), (b) Aqueous And (c), (d) Non-Aqueous Dispersants=124,144,1

Fig. 3-6-3. Particle Size Analysis Of Milled Powders=125,145,1

Fig. 3-6-4. Viscosity As A Function Of Dispersant Concentration In Powder/Solvent System=126,146,1

Fig. 3-6-5. Viscosity As A Function Of Dispersant Concentration In Powder/Solvent/Binder/Plasticizer System=126,146,1

Fig. 3-6-6. Relative Density And Green Density Of Tapes As A Function Of (PVB+Plasticizer) And Powder Ratio=127,147,1

Fig. 3-6-7. Thickness Of Tape Vs. Height Of Slurry Reservoir=129,149,1

Fig. 3-6-8. Thickness Of Tape Vs. Tape-Casting Speed At Various Slurry Viscosity=130,150,1

Fig. 3-6-9. Thickness Of Tape Vs. Blade Opening Height At Various Slurry Viscosity=132,152,1

Fig. 3-6-10. Thickness Of Tape Vs. Slurry Viscosity At Various Blade Opening=133,153,1

Fig. 3-6-11. SEM Micrographs Of Green Tapes.(a) Viscosity: 2003 cPs, 100 ㎛, (b) Viscosity: 5300 cPs, 200 ㎛=134,154,1

Fig. 3-6-12. Instron 5565 And Test Fixture For Tensile Strength Test=135,155,1

Fig. 3-6-13. Green Tapes For Tensile Strength Test=135,155,1

Fig. 3-6-14. Mechanical Behavior Of Green Tape With Different Amount Of Plasticizer Content Against The Tensile Stress=136,156,1

Fig. 3-6-15. Mechanical Behavior Of Green Tape With Different Amount Of Binder Content Against The Tensile Stress=137,157,1

Fig. 3-6-16. Mechanical Behavior Of Green Tape With Different Drying Time At Room Temperature Against The Tensile Stress=138,158,1

Fig. 3-6-17. Mechanical Behavior Of Green Tape With Different Drying Time At 50℃ Against The Tensile Stress=139,159,1

Fig. 3-6-18. Mechanical Behavior Of Green Tape With Different Drying Time At 100℃ Against The Tensile Stress=139,159,1

Fig. 3-6-19. Relative Density Of Sintered Tape And Green Tape With Lamination Pressure=141,161,1

Fig. 3-6-20. TGA Of A And B PVB In Air Atmoshpere At 10℃/min Heating=142,162,1

Fig. 3-6-21. TGA Of A And B PVB In N₂ Atmoshpere At 10℃/min Heating=143,163,1

Fig. 3-6-22. TGA Of Green Tape Casted With A And B PVB In Air And N₂ At 10℃/min Heating=144,164,2

Fig. 3-6-23. Weight Loss As A Function Of Heating Time For 1, 2 And 3㎜ Thickness=146,166,1

Fig. 3-6-24. Weight Loss As A Function Of Binder Burnout Temperature=148,168,1

Fig. 3-6-25. Sintered Density As A Function Of Binder Burnout temperature=148,168,1

Fig. 3-6-26. Weight Loss As A Function Of Specimen Area=150,170,1

Fig. 3-6-27. Optical Photographs Of The Printed Patterns Of Test Coupon=151,171,2

Fig. 3-6-28. Screen Printer=152,172,1

Fig. 3-6-29. Optical Microscope Images Of Printed Patterns With Different Amounts Of Vehicle; (a) 30%, (b) 20%=153,173,1

Fig. 3-6-30. Optical Microscope Images Of Printed Patterns Sintered After Screen Printing With Different Amounts Of Vehicle; (a) 30%, (b) 20%=154,174,1

Fig. 3-6-31. SEM Images Of The Interfaces Betwenn Cu Paste And Ceramic With Various Amounts Of LB37 Glass; (a) 1 wt%, (b) 5 wt%=154,174,2

Fig. 3-6-32. Via Hole Test Sheet=155,175,1

Fig. 3-6-33. Via Hole Filling Process=156,176,1

Fig. 3-6-34. Optical Photographs Of Via-Hole Filling=157,177,1

Fig. 3-7-1. Design Of Test Coupon=159,179,1

Fig. 3-7-2. Test Coupons=160,180,1

Fig. 3-7-3. Frequency And Qxf Of Ba-Nb-O Tapes Cofired With Ag Paste As A Function=160,180,1

Fig. 3-7-4. Frequency And Qxf Of Ferro L5 Tapes Cofired With Ag Paste As A Function Of Resonator Length=162,182,1

Fig. 3-7-5. Test Coupon And Stripe Line Single Resonator Green Sheet=162,182,1

Fig. 3-7-6. Simulation Result And Dimension Of Strip Line Single Resonator=164,184,1

Fig. 3-7-7. Measurement Of Strip Line Single Resonator Using Ba5Nb₄O15-BaNb₂O6 System(이미지 참조)=165,185,1

Fig. 3-7-8. Simulation Results Of Microwave Capacitor=165,185,1

Fig. 3-7-9. Tan δ And ESR Of Cu-Capacitor As A Function Of Oxygen Partial Pressure=166,186,1

Fig. 3-7-10. Capacitance Of Cu-Capacitor In The Frequency Range Between 1㎑ And 2 ㎓=166,186,1

Fig. 3-7-11. SEM Micrographs Of Microwave Capacitor Using Copper Electrode=167,187,1

Fig. 3-7-12. Simulation Of Hybrid Coupler And Test Jig=167,187,1

Fig. 3-7-13. Directional Couplers=168,188,1

Fig. 3-7-14. Simulation And Measured Data Of Hybrid Coupler=168,188,1

Fig. 3-7-15. Chip Band Pass Filter (Duplexer)=169,189,1

Fig. 3-7-16. Layer Structure, Simulated Return Loss And Far Field Pattern (Gain) Of Patch Antenna=169,189,1

Fig. 3-7-17. Chip Patch Antenna=170,190,1

Fig. 3-7-18. Computer Simulation Data Of Chip Patch Antenna For (a) 2 ㎓, (B) 11.85 ㎓=171,191,1

Fig. 3-7-19. Chip Patch Antenna With Cu Electrode=172,192,1

Fig. 3-7-20. Triplexer With Ag Electrode=173,193,1

Fig. 3-7-21. Pass Band And Loss Of Triplexer=173,193,1

Fig. 3-7-22. GPS Antenna=174,194,1

Fig. 3-7-23. Radiation Patterns Of GPS Antenna=174,194,1

Fig. 3-7-24. Antenna Switching Module=175,195,1

Fig. 3-7-25. Switch Mode Of ASM=175,195,2

Fig. 6-1-1. Schematic Representation Of All Possible Interactions In The LTCC Module With One, Two And Three Types Of Tape For Two-Phase(Left Column) And Single-Phase Tapes(Right Column). The Number Of All Interactions For A Particular Case Is In Parenthesis=196,216,1

Fig. 6-1-2. Unit-Cell Volume Of CaGeO₃-And CaTiO₃-Based Phase Indicating No Imcorporation Of Ti In CaGeoO₃ And 10 At.% Ge In CaTiO₃=199,219,1

Fig. 6-1-3. Back-Scattered Electron Image Of Ceramics With Composition Of 0.9CaGrO₃:0.1CaTiO₃(A...CaGeO₃, B...CaTiO₃)=199,219,1

Fig. 6-1-4. Permittivity And Temperature Coefficient Of Permittivity As A Function Of CaTiO₃Concentration=200,220,1

Fig. 6-1-5. Optical Microscope Images Of Thermally Etched (700℃, 15Min, Air Flow) Surface Of Bi12TiO₂Ceramics Sintered At 760℃ (a) And 800℃ (B) For 10h(이미지 참조)=201,221,1

Fig. 6-1-6. Transmission Electron Microscope Image Of The Typical Grains Of Bi12TiO20 Ceramics (The Black Nanometer-Size Dots Are Formed By The Electron-Bean Heating And They Are Not A Feature Of The Sintered Ceramics)(이미지 참조)=202,222,1

Fig. 6-1-7. Optical Microscope Image Of Thermally Etched (700℃, 15Min, Air Flow) Surface Of Bi12TiO20 Ceramics Sintered At 850℃ For 10h Showing The Exaggeratedly Grown Grains(Marked By "ex")(이미지 참조)=203,223,1

Fig. 6-1-8. Temperature Coefficient Of Resonance Frequency As A Function Of The B-Site Ionic Radius Of The Stochiometric Sillenite Compounds=204,224,1

Fig. 6-1-9. Schematic Presentation Of The MO₄-Tetrahedron Packing For Different Sizes Of M Ions: (a) M Ion Smaller Than The Ideal Size, (b) The Ideal Size Of M Ion, (c) M Ion Larger Than The Ideal=205,225,1

Fig. 6-1-10. O-O Bond Lengths In The MO₄ Tetrahedra Of The Sillenite Structure As A Function Of B-Site Ionic Radius (*: For PO₄ Tetrahedra In P-Sillenite)=205,225,1

Fig. 6-1-11. Q*F Values, Measured At 5.5㎓, As A Function Of The B-Site Ionic Radius Of The Stoichiometric Sillenite Compounds=206,226,1

Fig. 6-1-12. Backscattered Electron Image Of The Sample With 80 wt% Bi12TiO20 (A) And 20 wt% Ag(B) Fired At 800℃ For 5h(이미지 참조)=207,227,1

Fig. 6-1-13. XRD Patterns Of The Bi12(B0.5P0.5)O20 Composition Reacted At 750℃ For 10h With A Heating Rate Of (a) 3℃/Min And (B) 20℃/Min (:γ -Bi₂O₃, Unmarked Lines: Bi12(B0.3P0.5)O20)(이미지 참조)=208,228,1

Fig. 6-1-14. (a) Optical Microscope Image (For Estimation Of The Porosity) And (b) SEM Image Of Single-Phase Bi12(B0.5P0.5)O20 Ceramics Sintered At 750℃ For 10h(이미지 참조)=209,229,1

Fig. 6-1-15. Temperature Dependence Of Permittivity And Dielectric Losses For Bi12(B0.5P0.5)O20 Ceramics(이미지 참조)=210,230,1

Fig. 6-1-16. Microwave Dielectric Properties Of The 6-BNss Ceramics Sintered At 900℃. The Data For The Cubic (C) And Tetragonal (T) Modifications=211,231,1

Fig. 6-1-17. Average Grain Size Of δ-BNss Ceramics Sintered At 900℃=212,232,1

Fig. 6-1-18. RF Temperature Dependence Of Permittivity And Dielectric Losses Typical For δ -BNss Ceramics=213,233,1

Fig. 6-1-19. Frequency Dispersion Of Permittivity Between 1㎑ And 1㎒ (△k'(F)) Of δ-BNss Ceramics And Tetragonal Bi₃NbO7, Measured At 130℃(이미지 참조)=213,233,1

Fig. 6-1-20. Scanning Electron Microscope Images Of Chemically Etched Microstructures Of The δ-BNss Ceramics Sintered At 900℃: (a) x=0.20, (B) x=0.21, (C) x=0.23, (D) x=0.25. The Inset In (D) Is Of The Same Magnification As The Others Figures=214,234,1

Fig. 6-1-21. Microwave Dielectric Properties Of The Ceramics With x=0.20 And x=0.25 As A Function Of Sintering Temperature. All The Samples Exhibit A Similar Porosity, Estimated To Be 97%=214,234,1

Fig. 6-1-22. RF Temperature Dependence Of Permittivity And Dielectric Losses Of The Cubic And Tetragonal Modifications Of The x=0.25 Composition (Measured At 1㎑)=215,235,1

Fig. 6-1-23. Scanning Electron Microscope Images Of Chemically Etched Microstructures Of The x=0.25 Ceramics Sintered At 850℃ (A), 870℃ (B), 910℃ (C), And 940℃ (D)=216,236,1

Fig. 6-1-24. XRD Patterns Of The x=0.25 Ceramics Annealed For 3hH At Different Temperatures. Patterns (a) And (e) Are Single-Phase Cubic δ-BNss, (c) Is A Single-Phase Tetragonal BiNbO7, And (b) And (e) Are A Two-Phase Mixture Of Cubic And Tetragonal Forms (Patterns Are Index Based On The Fluorite Prototype Cell)(이미지 참조)=216,236,1

Fig. 6-1-25. Lattice Parameters Of δ-BNss. For The x=0.25 δ-BNss Two Parameters Were Calculated, One For The Powders Annealed At 790℃ And One For The Powder Annealed At 950℃=217,237,1

Fig. 6-1-26. Phase Composition Of The x=0.25 Powder As A Function Of Annealing Temperature (Estimated From XRD Patterns)=218,238,1

Fig. 6-1-27. XRD Patterns Of Various Samples On The TiO2 - TeO2 Tie Line=218,238,1

Fig. 6-1-28. Typical SEM Image Of The Microstructure Of A TiTe₃O8 Ceramic Sintered At 720℃/5h. The Sample Was Thermally Etched For 10Min At 710℃(이미지 참조)=219,239,1

Fig. 6-1-29. Typical TEM Image Of A TiTe₃O8 Ceramic Sintered At 720℃/5h And Cooled At 10℃/Min. Micrograph Reveals No Main Structural Defects(이미지 참조)=220,240,1

Fig. 6-1-30. (a) Typical Back-Scattered Electron (BSE) Image Of A Two-Phase (Phase A: TiTe₃O8 Phase 8: TeO₂) Dense Ceramic With The Composition 0.80TiTe₃O8-0.2TeO₂. (b) Typical BSE Image Of Two-Phase (Phase C: TiTe₃O8; Phase D: TiO₂) Ceramic With The Composition 0.6TiO₂-0.4 TeO₂=220,240,1

Fig. 6-1-31. Microwave Dielectric Propertiesof Compositions From The TiTe₃O8-TeO₂ Tie Line(이미지 참조)=221,241,1

Fig. 6-2-1. Scanning Electron Microscope Micrographs Of The Exaggerated Grain Growth Of Ag(Nb, Ta)26O69 On The Core-Shell Boundary Region Of The Ceramic Sample With Starting Composition AgNb1/2Ta1/2O₃After Firing In An Oxygen Atmosphere At 1220 C For 10 H (A-AgNb1/2Ta1/2O₃, C-Ag8(Nb, Ta)26O69)(이미지 참조)=222,242,1

Fig. 6-2-2. Scanning Electron Microscope Micrographs Of The Bi12TiO20 Sintered At (a) 740℃; (B) 800℃; (C) 850℃ (Exaggerated Grain Growth)(이미지 참조)=223,243,1

Fig. 6-2-3. Scanning Electron Microscope Image Of CaTiO₃-NdAlO₃ Ceramics Produced From The Hard Granulate And Sintered At 1400℃ For 5 h(이미지 참조)=225,245,1

Fig. 6-2-4. Scanning Electron Microscope Image Showing The Kirkendall Porosity On The Interface Of Two LTCC Layers=226,246,1

Fig. 6-2-5. Scanning Electron Microscope Image Showing The Microcracks Generated As A Result Of The Oxidation Of The Bi6Te₂O13(이미지 참조)=226,246,1

Fig. 6-2-6. Scanning Electron Microscope Image Of The Cross-Section Of An LTCC Module Showing The Silver Conductor Co-Fired With The Ceramics Layers=227,247,1

Fig. 6-2-7. Transmission Electron Microscope Images Of The Defects In The Crystal Structure Of The Ceramics With The Composition 0.7CaTiO₃-0.3NdAlO₃(이미지 참조)=228,248,1

Fig. 6-3-1. Temperature Dependence Of The Permittivity As A Function Of x In Ag(Nb1-x,Tax)O₃Ceramics Sintered To 97% Of Theoretical Density. Thick Lines Are Used To Indicate The Compositions With Monotonically Increasing To Monotonically Decreasing Temperature Dependence (x=0.35 And x=0.65)(이미지 참조)=229,249,1

Fig. 6-3-2. (a) Particle Size Distribution Of The ANT Powders Prepared By Three Different Processing Routes: Milling For 30 Min At 150 Rpm In A ZrO₃Mill, Hand-Grinding And Granulating And (b) Temperature Dependence Of The Permittivity Of The Ceramics With The Composition 45 wt.% Ag(Nbo.65Ta0.35)O3.55 wt.% Ag(Nb0.35Ta0.65)O₃ Sintered From These Powders. All Samples Are Sintered To 97% Of Theoretical Density(이미지 참조)=231,251,1

Fig. 6-3-3. Scanning Electron Microscope Images Of The Microstructures Of The ANT.ANT Composite Ceramics Showing A Phase Distribution In The Ceramics Prepared From The Hand-Ground (a And b) And Granulated Powders (c And d) (Dark Phase, Ag(Nb0.63Ta0.35)O₃ Light Phase, Ag(Nb0.35Ta0.65)O₃, Grey Phase, The Reaction Product)(이미지 참조)=232,252,1

Fig. 6-3-4. Bandpass Filters (1.8 And 0.9 ㎓) Produced From The ANT. ANT Composite Ceramics And A Commercial 1.8 ㎓ Bandpass Filter Produced From The Material Based On Ba6-x,Nd8+2/3xTi18O54 With The Permittivity ~90 (For The Size Comparison)(이미지 참조)=233,253,1

Fig. 6-3-5. Sem Micrographs Of Ceramics With The AgNb1-xTaxO₃(x = 0.5) Composition, Sintered For 10 H At 1220℃ ((a) Image Of The Thermally Etched Surface (Secondary Electrons) And (b) Image Of The Polished Surface (Backscattered Electrons) ("A" Denotes The AgNb1/2Ta1/2O₃ Phase And '"C" Denotes The Ag8(Nb1-x,Tax)26O69 Phase)(이미지 참조)=234,254,1

Fig. 6-3-6. Variation Of The Permittivity And The Qxf Value (In ㎓), Measured At -2 ㎓, As A Function Of The Composition Of The AgNb1-xTaxO₃ Solid Solutions (0.46 < x< 0.54). Values In Parentheses Are Qxf Values That Have Been Corrected Due To The Conductor Losses(이미지 참조)=234,254,1

Fig. 6-3-7. Increase Of Capacitance (C) And Dissipation Factor (Tgδ) With The Frequency Decrease From 100 ㎑ To 100 ㎐ Of The Silver-Plated Ceramic Capacitors With The AgNb1-xTaxO₃(x = 0.5) Composition, Sintered For 10 H At 1220℃(이미지 참조)=235,255,1

Fig. 6-3-8. TEM Micrograph Of A AgNb1-xTaxO₃(x = 0.5) Sample Sintered For 10 h At 1220 ℃; The Micrograph Is A Bright-Field Image From A Grain Of AgNb1/2Ta1/2O₃, And The Arrows Indicate Amorphous-Like Precipitates(이미지 참조)=236,256,1

Fig. 6-3-9. (a) Selected-Area Electron Diffraction Pattern Of A AgNb1-xTaxO₃(x = 0.5) Sample Sintered For 10h At 1220℃ In A Region That Is Rich In Amorphous-Like Precipitates. (b) Bright-Field TEM Image Of The Same Region In Fig. 5(a). (C) Dark-Field Tem Image Of The Region Described In Fig. 5(b), Recombined From The Diffraction Ring And Excluding The Diffraction Spots Of The Main Phase=236,256,2

Fig. 6-3-10. TEM Bright-Field Image From A Grain Of The AgNb1-xTaxO₃(x = 0.5) Sample, Showing Transformation Twins(이미지 참조)=237,257,1

Fig. 6-3-11. Variation Of The Resonant Frequency ( f ), Measured At ~2 ㎓, As A Function Of The Temperature (T) And Composition Of The AgNb1-xTaxO₃ Solid Solutions (0.46 < x < 0.54)(이미지 참조)=238,258,1

Fig. 6-3-12. Variation Of The Capacitance (C), Measured At 1 ㎒, As A Function Of The Temperature (T) And Composition Of The Silver-Plated Ceramic Capacitors With The AgNb1-xTaxO₃ 5.5(x = 0.5) Composition, Sintered For 10 h At 1220℃(이미지 참조)=239,259,1

칼라목차

jpg

Fig. 3-2-13. SEM Image (x10,100) Of (1-x)Ca₂P₂O7-xTiO₂(이미지 참조)=24,44,1

Fig. 3-2-25. (a) And (b) Bright-Field Image TEM Micrographs Of The 1/6Ba5Nb₄O15-5/6BaNb₂O6 Sintered At 1250℃ For 2 h, EDS Spectra Of The Phase Marked By (c) 1 And (d) 2(이미지 참조)=37,57,1

Fig. 3-2-26. Relative Integral Intensities Of BaNb₂O6 In (1-x)Ba5Nb₄O15-xBaNb₂O6 Mixtures As A Function Of BaNb₂O6 Content(이미지 참조)=37,57,1

Fig. 3-2-37. SEM Micrographs (Etched And Fracture Surface) Of Bulk Samples (a) Sintered At 850℃, (b) 900℃, And Tapes (c) Sintered At 850℃, (d) At 900℃=47,67,2

Fig. 3-2-38. Relative Dielectric Constant Of L5 Samples Sintered At 850 And 900℃=48,68,1

Fig. 3-2-40. EDS Line Scanning Of L5 Tape Cofired With Ag Paste At 900℃ For 10 Min=50,70,1

Fig. 3-2-44. (a) And (b) Bright-Field Image TEM Micrographs of The 0.85Ba5Nb₄O15-0.15BaNb₂O6 Samples With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 900℃ For 2 h (Inset Is A SAD Pattern Of The Intergranular phase). (c) EDS Analysis Of The Intergranular Phase In (b)(이미지 참조)=56,76,1

Fig. 3-3-4. EPMA Of (a) LBA361, (b) ZB55=64,84,2

Fig. 3-3-8. Ferro L5 Laminated Tapes Cofired With Ag Paste Sintered At 900℃ For 10min. (a) A, (b ) B, (c) C Paste=69,89,1

Fig. 3-3-9. Ferro L5 Laminated Tapes Cofired With Ag Paste Sintered At 900℃ For 10min=70,90,1

Fig. 3-3-10. Ferro L5 Laminated Tapes Cofired With Ceramic Paste Sintered At 900℃ For 10 min=70,90,1

Fig. 3-3-12. SEM Micrographs Of Ceramic-Outer Electrode After Soldering=72,92,1

Fig. 3-4-12. Backscatterd Electron Image Of 0.84Ba5Nb₄O15-0.16BaNb₂O6 Sample With 0.3wt% B₂O₃ wt% V₂O5 Sintered At 950℃ For 2 h In Po₂=10-8 Atm(이미지 참조)=86,106,1

Fig. 3-4-13. (a) And (b) Bright-Field Image Of TEM Micrographs Of The 0.84Ba5Nb₄O15-0.16BaNb₂O6 Sample With 0.3 wt% B₂O₃ And 0.3 wt% V₂O5 Sintered At 950℃ For 2 In Po2=10-8 Atm(Insets Ard SAD Pattern Of The Intergranular Phase), (c) EDS Analysis Of The Integranular Phase In (a) And (b) Content(이미지 참조)=87,107,1

Fig. 3-4-20. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With LBS Glass Samples Sintered At 950℃ For 2h (a) 5, (b) 10, (c) 20 wt.% And TEM Image Of 0.9MgTiO₃-0.1CaTiO₃With 20 wt.% LBS Glass Samples Sintered At 950℃ For 2h With (d) 20 wt.% LBS Glass(이미지 참조)=93,113,1

Fig. 3-4-25. SEM Micrograph Of 0.9MgTiO₃-0.1CaTiO₃ With 20 wt.% LBS Sintered At 1000℃ For 2h And EDS Results From The Areas Marked In SEM Micrograph: Marked As 'a' (a), 'b' (b), 'c' (c), and 'd' (d)(이미지 참조)=98,118,1

Fig. 3-4-31. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With 5 wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure; (a) Po₂=0.21atm, (b) Po₂=10-4atm, (c) Po₂=10-10atm, (d) Po₂=10-14atm(이미지 참조)=106,126,2

Fig. 3-4-32. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With 10 wt.% LBS Glass Samples Sintered At 950℃ For 2h Under The Variation Of Oxygen Partial Pressure; (a) Po₂=0.21atm, (b) Po₂=10-4atm, (c) Po₂=10-8atm, (d) Po₂=10-10atm, (e) Po₂=10-12atm, (f) Po2=10-14atm(이미지 참조)=107,127,1

Fig. 3-4-33. SEM Micrographs Of 0.9MgTiO₃-0.1CaTiO₃ With Xwt.% LBS Glass Sintered At Po₂=10-10atm 950℃ For 2h ; (a) 5 wt.%, (b) 10wt.%, (c) 20wt.%(이미지 참조)=108,128,1

Fig. 3-5-1. Photo Of K-Squares=113,133,1

Fig. 3-5-5. Microstructure Of Ba-Nb-O System Components Which Show The Improved Textures=116,136,1

Fig. 3-5-8. Microstructure Of Interface Between The Cu Paste And The Ceramics; (a) 20 wt% Glass, Commercial Paste, (b) 10 wt% Glass, Our Own Paste Containing 5 wt% Glass=119,139,1

Fig. 3-5-10. Microstructure Of MCT Ceramic Sintered With Cu=120,140,1

Fig. 3-5-13. (a) EDS Line Scanning And (b) TEM Micrograph Of Ceramic/Cu Electrode Interface=123,143,1

Fig. 3-6-1. Chip Fabrication Process=123,143,1

Fig. 3-6-2. Sedimentation Test Of (a), (b) Aqueous And (c), (d) Non-Aqueous Dispersants=124,144,1

Fig. 3-6-11. SEM Micrographs Of Green Tapes.(a) Viscosity: 2003 cPs, 100 ㎛, (b) Viscosity: 5300 cPs, 200 ㎛=134,154,1

Fig. 3-6-12. Instron 5565 And Test Fixture For Tensile Strength Test=135,155,1

Fig. 3-6-13. Green Tapes For Tensile Strength Test=135,155,1

Fig. 3-6-27. Optical Photographs Of The Printed Patterns Of Test Coupon=151,171,2

Fig. 3-6-28. Screen Printer=152,172,1

Fig. 3-6-29. Optical Microscope Images Of Printed Patterns With Different Amounts Of Vehicle; (a) 30%, (b) 20%=153,173,1

Fig. 3-6-30. Optical Microscope Images Of Printed Patterns Sintered After Screen Printing With Different Amounts Of Vehicle; (a) 30%, (b) 20%=154,174,1

Fig. 3-6-31. SEM Images Of The Interfaces Betwenn Cu Paste And Ceramic With Various Amounts Of LB37 Glass; (a) 1 wt%, (b) 5 wt%=154,174,2

Fig. 3-6-32. Via Hole Test Sheet=155,175,1

Fig. 3-6-34. Optical Photographs Of Via-Hole Filling=157,177,1

Fig. 3-7-2. Test Coupons=160,180,1

Fig. 3-7-13. Directional Couplers=168,188,1

Fig. 3-7-14. Simulation And Measured Data Of Hybrid Coupler=168,188,1

Band Pass Filter=168,188,1

Duplexer=168,188,1

Fig. 3-7-19. Chip Patch Antenna With Cu Electrode=172,192,1

Fig. 3-7-20. Triplexer With Ag Electrode=173,193,1

Fig. 3-7-21. Pass Band And Loss Of Triplexer=173,193,1

Fig. 3-7-22. GPS Antenna=174,194,1

Fig. 3-7-23. Radiation Patterns Of GPS Antenna=174,194,1

Fig. 3-7-24. Antenna Switching Module=175,195,1

Fig. 3-7-25. Switch Mode Of ASM=175,195,1

Fig. 6-1-1. Schematic Representation Of All Possible Interactions In The LTCC Module With One, Two And Three Types Of Tape For Two-Phase(Left Column) And Single-Phase Tapes(Right Column). The Number Of All Interactions For A Particular Case Is In Parenthesis=196,216,1

Fig. 6-1-3. Back-Scattered Electron Image Of Ceramics With Composition Of 0.9CaGrO₃:0.1CaTiO₃(A...CaGeO₃, B...CaTiO₃)=199,219,1

Fig. 6-1-6. Transmission Electron Microscope Image Of The Typical Grains Of Bi12TiO20 Ceramics (The Black Nanometer-Size Dots Are Formed By The Electron-Bean Heating And They Are Not A Feature Of The Sintered Ceramics)(이미지 참조)=202,222,1

Fig. 6-1-7. Optical Microscope Image Of Thermally Etched (700℃, 15Min, Air Flow) Surface Of Bi12TiO20 Ceramics Sintered At 850℃ For 10h Showing The Exaggeratedly Grown Grains(Marked By "ex")(이미지 참조)=203,223,1

Fig. 6-1-9. Schematic Presentation Of The MO₄-Tetrahedron Packing For Different Sizes Of M Ions: (a) M Ion Smaller Than The Ideal Size, (b) The Ideal Size Of M Ion, (c) M Ion Larger Than The Ideal=205,225,1

Fig. 6-1-10. O-O Bond Lengths In The MO₄ Tetrahedra Of The Sillenite Structure As A Function Of B-Site Ionic Radius (*: For PO₄ Tetrahedra In P-Sillenite)=205,225,1

Fig. 6-1-12. Backscattered Electron Image Of The Sample With 80 wt% Bi12TiO20 (A) And 20 wt% Ag(B) Fired At 800℃ For 5h(이미지 참조)=207,227,1

Fig. 6-1-14. (a) Optical Microscope Image (For Estimation Of The Porosity) And (b) SEM Image Of Single-Phase Bi12(B0.5P0.5)O20 Ceramics Sintered At 750℃ For 10h(이미지 참조)=209,229,1

Fig. 6-1-20. Scanning Electron Microscope Images Of Chemically Etched Microstructures Of The δ-BNss Ceramics Sintered At 900℃: (a) x=0.20, (B) x=0.21, (C) x=0.23, (D) x=0.25. The Inset In (D) Is Of The Same Magnification As The Others Figures=214,234,1

Fig. 6-1-23. Scanning Electron Microscope Images Of Chemically Etched Microstructures Of The x=0.25 Ceramics Sintered At 850℃ (A), 870℃ (B), 910℃ (C), And 940℃ (D)=216,236,1

Fig. 6-1-28. Typical SEM Image Of The Microstructure Of A TiTe₃O8 Ceramic Sintered At 720℃/5h. The Sample Was Thermally Etched For 10Min At 710℃(이미지 참조)=219,239,1

Fig. 6-1-29. Typical TEM Image Of A TiTe₃O8 Ceramic Sintered At 720℃/5h And Cooled At 10℃/Min. Micrograph Reveals No Main Structural Defects(이미지 참조)=220,240,1

Fig. 6-1-30. (a) Typical Back-Scattered Electron (BSE) Image Of A Two-Phase (Phase A: TiTe₃O8 Phase 8: TeO₂) Dense Ceramic With The Composition 0.80TiTe₃O8-0.2TeO₂. (b) Typical BSE Image Of Two-Phase (Phase C: TiTe₃O8; Phase D: TiO₂) Ceramic With The Composition 0.6TiO₂-0.4 TeO₂=220,240,1

Fig. 6-3-2. (a) Particle Size Distribution Of The ANT Powders Prepared By Three Different Processing Routes: Milling For 30 Min At 150 Rpm In A ZrO₃Mill, Hand-Grinding And Granulating And (b) Temperature Dependence Of The Permittivity Of The Ceramics With The Composition 45 wt.% Ag(Nbo.65Ta0.35)O3.55 wt.% Ag(Nb0.35Ta0.65)O₃ Sintered From These Powders. All Samples Are Sintered To 97% Of Theoretical Density(이미지 참조)=231,251,1

Fig. 6-3-4. Bandpass Filters (1.8 And 0.9 ㎓) Produced From The ANT. ANT Composite Ceramics And A Commercial 1.8 ㎓ Bandpass Filter Produced From The Material Based On Ba6-x,Nd8+2/3xTi18O54 With The Permittivity ~90 (For The Size Comparison)(이미지 참조)=233,253,1

Fig. 6-3-5. Sem Micrographs Of Ceramics With The AgNb1-xTaxO₃(x=0.5) Composition, Sintered For 10 H At 1220℃ ((a) Image Of The Thermally Etched Surface (Secondary Electrons) And (b) Image Of The Polished Surface (Backscattered Electrons) ("A" Denotes The AgNb1/2Ta1/2O₃ Phase And '"C" Denotes The Ag8(Nb1-x,Tax)26O69 Phase)(이미지 참조)=234,254,1

이용현황보기

전자재료 저온동시소성기술 개발. 2단계 이용현황 표 - 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0001082165 621.3 ㄱ373ㅈ v.2 서울관 서고(열람신청 후 1층 대출대) 이용중
0001082166 621.3 ㄱ373ㅈ v.2 서울관 서고(열람신청 후 1층 대출대) 이용중