본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

[표제지 등]=0,1,2

제출문=I,3,1

요약문=II,4,1

Summary=III,5,2

Contents=V,7,1

목차=(1),8,1

그림목차=(2),9,7

표목차=(9),16,2

제1장 서론=1,18,1

제1절 연구개발의 목적=1,18,1

제2절 연구개발의 필요성=1,18,2

제3절 연구개발 내용 및 범위=2,19,1

제2장 양성자가속기 특성 및 활용분야=3,20,1

제1절 양성자가속기의 특성 및 활용=3,20,2

제3장 나노 기술의 국내ㆍ외 기술개발 현황=5,22,1

제1절 나노 기술의 범위 및 특성=5,22,14

제2절 국내외 나노 기술의 동향 및 트렌드=19,36,26

제3절 경쟁력 비교ㆍ평가=45,62,8

제4절 경쟁력 강화방안=53,70,4

제5절 참고문헌=57,74,3

제4장 양성자 가속기의 나노기술 응용=60,77,1

제1절 SOI(Silicon-On-Insulator) 웨이퍼 적용=60,77,35

제2절 MEMS / NEMS 응용=95,112,9

제3절 리소그래피(Lithography) & 이온 밀링(Ion Milling)기술=104,121,17

제4절 Gas Cluster Ion Beam (GCIB)=121,138,12

제5장 연구개발결과의 활용계획=133,150,1

표목차

Table 3.1.1. Nano-Technology Applied Fields=10,27,1

Table 3.2.1. 미국의 나노 기술 지원 규모=20,37,1

Table 3.2.2. National Nanotechnology Initiative Budget Authority=21,38,1

Table 3.2.3. 미국 정부 지원 연구/개발 프로그램=22,39,1

Table 3.2.4. 주요 대학의 나노관련 연구 동향=23,40,1

Table 3.2.5. NNI 활동의 조정 결과=25,42,1

Table 3.2.6. NNI의 분야(5개 분야)별 지원 규모=26,43,1

Table 3.2.7. 일본의 정부부처별 나노기술 지원 동향=29,46,1

Table 3.2.8. 일본 정부기관별 나노 기술 관련 지원 예산 및 지원 분야=30,47,1

Table 3.2.9. 2001년도 일본 산업계가 착수할 나노 기술 과제=31,48,1

Table 3.2.10. 일본의 연구개발 구성 단계=33,50,1

Table 3.2.11. 삼성전자=40,57,1

Table 3.2.12. 하이닉스=41,58,1

Table 3.2.13. LG전자=41,58,1

Table 3.3.1. 세계 주요국의 나노 기술 개발 현황 비교 분석=45,62,1

Table 3.3.2. 나노 기술 주요 선진국의 기술 경쟁력 (기술 전반)=46,63,1

Table 3.3.3. 합성 / 조립 분야 세부 기술 (나노 구조체 제작)=47,64,1

Table 3.3.4. 바이오 나노 세부 기술=48,65,1

Table 3.3.5. 분산/ 코팅 분야 세부 기술=48,65,1

Table 3.3.6. 대표면적 소재 기술=49,66,1

Table 3.3.7. 나노 소자 기술=49,66,1

Table 3.3.8. 각국별, 항목별 기술 수준 종합=50,67,1

Table 4.1.1. Comparison Of Thin SOI And Thick SOI Wafers=63,80,1

Table 4.2.1. Application Of MEMS Technology=100,117,1

Table 4.3.1. 노출광의 파장 감소에 따른 집적도의 향상=106,123,1

그림목차

Fig. 2.2.1. Proton Accelerator Application Fields=4,21,1

Fig. 3.1.1. IBM Characters Wrote By Xenon Atom=6,23,1

Fig. 3.2.1. Micro-Images Of Hand From 1cm To 1nm (Ref: The Classic Book Powers Of Ten, By Philip And Phylis Morrison And The Office Of Charles And Ray Eames)=8,25,1

Fig. 3.4.1. A Sort Of Carbon Based Materials=12,29,1

Fig. 3.4.2. Driving Mechanisms Of Nano & Molecular Electronics=13,30,1

Fig. 4.1.1. Cross-Section View Of Conventional And SOI Wafers [3]=61,78,1

Fig. 4.1.2. Worldwide SOI Wafer Market Forecast=62,79,1

Fig. 4.1.3. The Use Of The SOI According To Its Features [3]=64,81,1

Fig. 4.1.4. SOI's Wide Range Of Applications, Each Taking Advantage Of a Different Thickness Of The Si Layer=66,83,1

Fig. 4.1.5. Bonded SOI Wafer Production Processes=69,86,1

Fig. 4.1.6. Conductance Vs. Gate Voltage For a Structure With 8nm p-Si Film Measured For Various Drain Voltages VD. The Insert Shows The Variation Of The ID-VD Characteristic During Repetition Of Measurements; 1-4 Are The Numbers Of Measurement=70,87,1

Fig. 4.1.7. Gate Voltage(VG) Dependencies Of Drain Current (ID) For Structures A And B. The Substrate Serves As The Gate. The Drain-Source Voltage Is VD=0.15 V. The Insert Shows The ID - VD Dependencies For Structures A And B After Stress At VG=-100 V=71,88,1

Fig. 4.1.8. SRP Profiles Of (a) Bulk Si And (b) SOI 100 And 60m, Doped By Spike Annealed At 850 ℃=72,89,1

Fig. 4.1.9. Rs Values Vs. Annealing Process Temperature Of Samples Doped With (a) As And (b) BF₂=73,90,1

Fig. 4.1.10. SRP Profiles Of Samples Implanted With (a) As And (b) BF₂ After 1125 ℃ Spike Annealing=74,91,1

Fig. 4.1.11. A Cubic Unit Cell Of Crystalline=75,92,1

Fig. 4.1.12. Defect Density With Respect To The Critical Hydrogen Ion Number Under Different Implantation Doses Of Hydrogen Ions=75,92,1

Fig. 4.1.13. Defect Distribution In Bonded SOI Wafers=76,93,1

Fig. 4.1.14. Laser Confocal Images Of Defects Observed In Bonded SOI Wafers=76,93,1

Fig. 4.1.15. (a) TEM And (b) Corresponding Laser Confocal Images Of Pit Observed In Bonded SOI Wafer=77,94,1

Fig. 4.1.16. (a) TEM (b) Corresponding Laser Confocal Images Of Void Observed In Bonded SOI Wafer=78,95,1

Fig. 4.1.17. Optical Micrographs Of The Preferential Etched Surfaces Of Epitaxial Si Layer On (a) SOI Substrate Without Hydrogen Annealing And (b) SOI Substrate With Hydrogen Annealing=79,96,1

Fig. 4.1.18. AFM Images Of Surface Of (a) SOI Substrate Without Hydrogen Annealing And (b) SOI Substrate With Hydrogen Annealing=80,97,1

Fig. 4.1.19. SIMS Oxygen Depth Profiles Of The SOI Substrate Without Hydrogen Annealing And The Substrate With Hydrogen Annealing=81,98,1

Fig. 4.1.20. RBS/C Spectra Of SOI Substrate (a) Without Hydrogen Annealing And (b) With Hydrogen Annealing=82,99,1

Fig. 4.1.21. A Typical XTEM Micrograph Of The SOI Sample Formed By SIMOX With Water Plasma With 90 keV Ion Implantation At a Dose Of 2.5 x 10 17 cm -²(이미지 참조)=83,100,1

Fig. 4.1.22. Effect Of Implanted Dose On The BOX Thickness Of The SOI Materials Fabricated With The Conventional SIMOX Process And The Water Ion Implantation Approach=84,101,1

Fig. 4.1.23. TRM Simulation Of (a) Oxygen And (b) Hydrogen Depth Profiles And Comparison Of Simulated And Measured Depth Profiles Obtained By SMS On Water Ion Implanted Sample, Which Was Implanted With Dose Of 4.5 x 10 17 cm-² At 90 keV(이미지 참조)=85,102,1

Fig. 4.1.24. XTEM Micrograph Of Sample C With Slight Variation Of 0+ Implanted Energy. Three Steps Of Implantation Were Used: First Step 90 keV, 1.5 x 10 16 cm-² Second Step 85 keV, 6 x 10 16 cm-² And Third Step 80 keV, 2.25 x 10 17 cm-²(이미지 참조)=86,103,1

Fig. 4.1.25. XTEM Micrograph Of SOI Sample Annealed In N₂ Ambient. The Sample Was Prepared With 90 KeV Water Ion Implantation At A Dose Of 4.5 x 10 17 cm-²(이미지 참조)=86,103,1

Fig. 4.1.26. AFM Images Of Surface Of (a) Standard Dose SOI Substrate And (b) Low Dose SOI Substrate=87,104,1

Fig. 4.1.27. AFM Images Of Surface Of Epitaxial Si Layer On (a) Standard Dose SOI Substrate And (b) Low Dose SOI Substrate=88,105,1

Fig. 4.1.28. Estimated Depth Profile Of Hydrogen Concentration For Implantation Dose Of 1 x 10 17 H+/cm² At 65 keV In SOI Wafer(이미지 참조)=89,106,1

Fig. 4.1.29. ERD(Elastic Recoil Detection) Spectrum From Si Implanted With 65 keV Proton Beam At KAERI=90,107,1

Fig. 4.1.30. ERD(Elastic Recoil Detection) Spectrum From Si Implanted With 65 keV Proton Beam=90,107,1

Fig. 4.1.31. Hydrogen Depth Profiling By SIMS=91,108,1

Fig. 4.1.32. Cross-Sectional TEM Image Of Si Implanted At A Dose Of 1.2 x 10 17/cm² with 65 keV Proton Beam(이미지 참조)=91,108,1

Fig. 4.2.1. An Imaginary Picture Of Nano-Size Robots In Human Bloods=96,113,1

Fig. 4.2.2. (a) Bulk, (b) Surface Micromachining Example=97,114,1

Fig. 4.2.3. MEMS Application (a) Optical Cross Connector (b) MEMS Optical Switch (c) MEMS RF Switch (d) MEMS Applied Sensor=99,116,1

Fig. 4.2.4. Behavior Of Point Defects Induced To Supersaturation=102,119,1

Fig. 4.2.5. Propsed Nano-Fabrication Technique=102,119,1

Fig. 4.2.6. SIMS Profiles For A Spike Annealed 500 eV, 1 x 10 15 cm-² Implant Of Boron, Co-Implanted With F At Various Energies And A Dose Of 2 x 10 15 cm-². The Substreat Was Pre-Amorphised With 2 keV Ge At A Dose Of 5 x 10 14cm-². Also Show Are Two Profiles Of A Similar Sequence Of Implants But With A 20 keV, 1x10 15 Ge Pre-Amorphisation Step And The No-F Case As-Implanted And Annealed(이미지 참조)=103,120,1

Fig. 4.2.7. Sheet Resistance And Junction Depth Variation For 1 x 10 15 cm-², 1 keV And 500 eV B Implants As Function A Pre-Amorphisation Species And Energy(이미지 참조)=103,120,1

Fig. 4.3.1. 8G Flash Memory By 60 nm Process And 2G DDR2 DRAM By 80 nm Process=105,122,1

Fig. 4.3.2. AFM Images Of Th PMMA Film Surfaces, Recorded In Th Tapping Mode With Typical Surface Features Characterized By A Cross Section Analysis=109,126,1

Fig. 4.3.3. Contact Angles Of Regular PMMA, And Samples Irradiated With 85 keV, 1 x 10 14 Ions/cm² Ca+ Ions(CA-PMMA), 1 x 10 15 Ions/cm² P+ Ions(P1-PMMA), 1 x 10 16 Ions/cm² P+ Ions (P2-PMMA)(이미지 참조)=110,127,1

Fig. 4.3.4. Map Of Singapore Produced In SU-8 On A 5 Cent Coin=111,128,1

Fig. 4.3.5. The Sequence Of Patterning Nano-Grating Structures By FIB Nano-Machining=112,129,1

Fig. 4.3.6. FIB Moire Patterns Of Nano-Gratings(Ruling Width : 80 nm, Spacing : 160 nm) On The Unreleased Poly-Si Cantilevers With Length Of 60 And 80 ㎛, Respectively. The Nano-Grating Was Created By FIB Milling From The Anchor To The Front (60 ㎛ Long Vantilever) And From The Front To The Anchor (80 ㎛ Long Cantilevers), Respectively=113,130,1

Fig. 4.3.7. Moire Fringes Produced By Rotation Of Reference Grating At An Angle θ, Relative To The Specimen Grating Subhected To Compressive, Zero And Tensile Streains, Respectively. Lines AB", AB And AB' Refer To Light Fringes In FIB Moire Pattern=114,131,1

Fig. 4.3.8. Strain Evolution Of Poly-Si Cantilevers During The Sacrificial Layer Etching. The Top Sequences Schematically Show The Volume Change Of The SiO₂Sacrificial Layer Underneath=115,132,1

Fig. 4.3.9. (a) Schematic Showing The Mass Gauge Fabrication Steps; (b) FIB Imaging Of Th Reference And Sample Beams; (c) SEM Picture Of Selective Pt Deposition And (d) The Relationship Between The Streain And The Loaded Mass=116,133,1

Fig. 4.3.10. FIB Imaging And TEM Imaging, Respectively=117,134,1

Fig. 4.3.11. Variable Etching Method And The Cross Section After Etching Precess=118,135,1

Fig. 4.3.12. High Aspect Ratio Trench Etch; Etch Depth : 85 ㎛; Trench Width : 3.5 ㎛=119,136,1

Fig. 4.3.13. Transfer Of Nanometer Scale Features (50 And 100 nm) Using Plasma Etching=119,136,1

Fig. 4.4.1. 25 keV GCIB Ultra-SmootherTM System Equipped For High-Throughput Automated Processing Of 200 mm (300 mm Optional) Diameter Substrate And Typical Specification=124,141,1

Fig. 4.4.2. MD Snapshots Of Ar2000 Cluster Ion Bombardment On Si(100) Surface At 1, 5 And 10 eV/atom (Total Incident Energy Is 2, 10 And 20 keV, Respectively)=125,142,1

Fig. 4.4.3. The Cluster Size Dependences On The Number Of Displacements And The Energy Deposition On Si Target Due To The Incident Ar Cluster Ion At The Energy Of 20 keV=126,143,1

Fig. 4.4.4. Phase-Contrast Microscope Images Of The CVD Diamond Membrane Surface (a) Before And (b) After GCIB Treatments=127,144,1

Fig. 4.4.5. Cluster Ion Energy Dependences Of (a) Refractive Index And (b) Surface Roughness For Ta₂O5(이미지 참조)=128,145,1

Fig. 4.4.6. Cross-Sectional Image Of Ta₂O5/SiO₂ Multilayer Film Observed By FE-SEM And AFM Images At The Interface Between Layers(이미지 참조)=129,146,1

이용현황보기

양성자가속기의 나노기술에의 응용 : 최종보고서 이용현황 표 - 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0001095851 539.7372 ㅎ155ㅇ 서울관 서고(열람신청 후 1층 대출대) 이용가능
0001095852 539.7372 ㅎ155ㅇ 서울관 서고(열람신청 후 1층 대출대) 이용가능