본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

[표제지 등]=0,1,2

제출문=1,3,2

보고서 초록=3,5,2

요약문=5,7,4

Summary=9,11,4

Contents=13,15,2

목차=15,17,2

제1장 연구개발 과제의 개요=17,19,2

제2장 국내외 기술개발 현황=19,21,2

제3장 연구개발 수행내용 및 결과=21,23,1

제1절 서언=21,23,3

제2절 동북아 중생대 지체구조 진화 특성=24,26,1

1. 동북아 중생대 주요 지체구조구의 지각진화 특성 및 고지리 분포=24,26,19

2. 동북아 5개국 지체구조도 범례 및 한반도 지체구조도 작성=42,44,6

3. 동북아 하부중생대 생물구 대비 특성=48,50,41

4. 동북아 중생대 주요 화성활동 특성 몇 지체구조적 의의=89,91,1

가. 한반도 현생화강암류의 암석학적특성=89,91,23

나. 동북아 중생대 화강암대 형성의 지체구조적 배경=111,113,5

5. 동북아 지역 DEM 및 위성 중/자력이상도 작성(위탁)=116,118,2

제3 절 한반도 주요 지체구조구 특성=118,120,1

1. 임진강습곡대의 지체구조 특성=118,120,1

가. 임진강습곡대의 지체구조 특성=118,120,2

나. Hida 지역 지체구조와 다비-술루대와의 연장성 규명=119,121,11

다. 친링-다비-술루대의 황해 연장성=129,131,3

2. 경기육괴와 옥천대 구조구의 재구획 및 재정의=131,133,1

가. 서북 옥천대 진산-복수 지역 변성퇴적암층의 층서 및 지질시대=131,133,45

나. 경기육괴와 옥천대 경계부의 구조적 진화 특성=176,178,17

다. 경기육괴와 중생대 남포층군 경계부의 구조적 진화 특성=192,194,7

라. 옥천대 경계부 백악기 소퇴적분지의 지구조적 진화 특성=199,201,19

3. 중력/자력 및 MT 자료에 의한 한반도 남부의 북서-남동(포항-음성) 측선의 지각구조 모델=218,220,10

제4장 목표달성도 및 관련분야에의 기여도=228,230,5

제5장 연구개발결과의 활용계획=233,235,1

제6장 연구개발과정에서 수집한 해외과학기술정보=234,236,3

제7장 참고문헌=237,239,20

부록=257,259,1

1. 위탁과제:지구포텐셜자료를 이용한 모호면 연구=258,260,3

제출문=1,263,1

보고서 초록=2,264,1

목차=3,265,1

제1장 위탁연구과제의 개요=4,266,1

제2장 국내외 기술개발 현황=5,267,1

제3장 위탁연구사업의 내용 및 결과=6,268,31

제4장 목표달성도 및 관련분야에의 기여도=37,299,1

제5장 연구개발결과의 활용계획=38,300,1

제6장 위탁연구과정에서 수집한 해외과학기술정보=39,301,1

제7장 참고문헌=40,302,2

2. 한ㆍ중ㆍ일 하부 중생대 척추 동물화석 산출 대비표=303,304,13

3. 고생대 말-중생대 동북아 고지자기 자료 D/B=316,317,61

칼라목차

jpg

그림 3-1. 본 사업의 연차별 추진체계=22,24,1

Fig. 3-2. Main Tectonic Units Of The North East Asia=25,27,1

Fig. 3-4. Geologic Map Of The Kolimo-Omolon Black And Surrounding Foldbelts=29,31,1

Fig. 3-7a. Earlymost Triassic (240 Ma) Geodynamic Reconstruction Map Simulated By FR Model On The North East Asia (Modified From Lee Et Al., 1997,1999)=38,40,1

Fig. 3-7b. (Continued) Late Triassic (210 Ma) Geodynamic Reconstruction Map Simulated By FR Model On The North East Asia (Modified From Lee Et Al., 1997,1999)=38,40,1

Fig. 3-7c. (Continued) Early Jurassic (180 Ma) Geodynamic Reconstruction Map Simulated By FR Model On The North East Asia (Modified From Lee Et Al., 1997,1999)=39,41,1

Fig. 3-7d. (Continued) Late Jurassic (150 Ma) Geodynamic Reconstruction Map Simulated By FR Model On The North East Asia (Modified From Lee Et Al., 1997,1999)=39,41,1

Fig. 3-7e. (Continued) Early Cretaceous (120 Ma) Geodynamic Reconstruction Map Simulated By FR Model On The North East Asia (Modified From Lee Et Al., 1997,1999)=40,42,1

Fig. 3-8. Crustal Thickness Contour Map In China=41,43,1

표 3-3. 동북아시아 지체구조도 범례=43,45,2

그림 3-9. 1/750만 한반도 지구조도(안)=47,49,1

Fig. 3-10. Paleogeographic Map Of Permian=48,50,1

Fig. 3-11. Paleogeographic Map Of Triassic=48,50,1

Fig. 3-12. Paleogeographic Map Of Early Jurassic=49,51,1

Fig. 3-13. Paleogeographic Map Of Late Jurassic=49,51,1

Fig. 3-14. Morphological Characteristics Of Glossopteris And Gangamopteris=52,54,1

Fig. 3-15. Fossil Ginkgo Leaf From Danyang Area=53,55,1

Fig. 3-17. Stratigraphic Correlation Of The Lower Mesozoic Daedong Supergroup=56,58,1

Fig. 3-18. Dicroidium From Mungyeong Area=56,58,1

Fig. 3-23. Utatsusaurus Hataii 표본 사진=68,70,1

Fig. 3-27. Keichousaurus=74,76,1

Fig. 3-28. Family Semionotidae=75,77,1

Fig. 3-29. Superfamily Redfieldiiformes=75,77,1

Fig. 3-31. Lufengosaurus=77,79,1

Fig. 3-36. Concordia Diagrams For SHRIMP U-Pb Zircon Data Of The Yangyang Syenitic Rock (OD5),And Sagogri Alkali Granite(Agr-SGR)=93,95,1

Fig. 3-37. Geographical Presentation Of Intrusion Ages For The Phanerazoic Granitic Rocks In South Korea=96,98,1

Fig. 3-38. Plot Of SiO₂wt% Versus Molar MnO/(MnO+Fe₂O₂+FeO+MgO+TiO₂)For The Representative Bulguksa(A) And Daebo Granite(B).Abbreviations In Fig. A Are E,Eonyang; I,Imog; J,Jangseong; P,Palgongsan; S,Sokrisan; W,Woraksan; Y,Yucheon, And In Fig. B Are A, Seoul And Anyang; D,Daejeon Gongju Area; H,Injae-Hongcheon Area; N,Namwon; P,Pocheon; S,Suncheon. See Text For The Sources Of The Data=101,103,1

Fig. 3-39. Plot Of SiO₂wt% Versus Na₂O wt% For The Representative Bulguksa(A)And Daebo Granite(B). Lines Represent Na₂O Content Of Australian I-type(I,2.95%)And S-type(S,2.2%),Respectively. Symbols In Fig. A; Blue Rectangle,Enyang And Yucheon Gr., Imog Gr., Jangseong Gr., And Palgingsan Gr.;Red Rectangle, Woraksan Gr.And Sokrisan Gr. Fig.B:Blue Rectangle,Gr.Of Daejeon-Gongju Area,Namwon Gr.,And Suncheon Gr.;Red Rectangle,Seoul And Anyang Gr., And Pocheon Gr.;Green Rectangle,Gr.Of Injae-Hongcheon Area.See Text For The Sources Of Data=102,104,1

Fig. 3-40. Plot Of SiO₂wt% Versus CaO wt% For The Representive Bulguksa(A)And Daebo Granite(B).Line Represent Trend Of I-type Magnetite-And Ilmenite-Series Of Japan. Symbols Are Same As In Fig.3-39=103,105,1

Fig. 3-41. Plot Of SiO₂wt% Versus Sr ppm For The Representative Bulguksa(A) And Daebo Granite(B). Symbols Are Same As Those In Fig.3-39=104,106,1

Fig. 3-42. Plot Of SiO₂wt% Versus Molar Al₂O₃/(CaO+K₂O+Na₂O) For The Representative Bulguksa(A) And Daebo Granite(B). Both 1.0 And 1.1 Of The Al₂O₃/(CaO+K₂O+Na₂O)Ratio Are The Boundary Of Metaluminous(M) And Peraluminous(P) Granite,And Of Australian I-type(I) And S-type(S),Respectively.Abbreviations Are Same As Those Of Fig.3-38=105,107,1

Fig. 3-43. Plot Of SiO₂wt% Versus Normative Corundum For The Representive Bulguksa(A) And Daebo Granite(B).1%Of Normative Corundum is The Boundary Of Australian I-type And S-type(S).Symbols Are Same As Those In Fig.3-39=106,108,1

Fig. 3-44. Presentation Of Magnetite-and Ilmenite-Series For Daebo And Bulguksa Granites. Abbreviations: GG,Gyonggy Massif; OC, Okchon Belt; YN,Yongnam Massif;Gs,Gyongsang Basin(Modified From Cho And Kwon,1994a)=108,110,1

Fig. 3-45. A Geographical Distribution Of Emplacement Pressure (Modified From Cho And Kwon,1994b)mPressures Were Calculated After Schmidt(1992).Abbreviations Are Same As Those Of Fig.3-44=110,112,1

Fig. 3-47. Frequency Diagrams Of Intrusion Ages For The Phanerozoic Granitic Rocks In(a) South Korea And(b)Japan=114,116,1

Fig. 3-48. Paleogeographic Maps Of East Asia Showing Plates Motions During Middle Jurassic And Late Cretaceous Time(Sagong Et Al 2005 And References In It)=115,117,1

그림 3-49. 임진강 습곡대의 지체구조적 위치도=118,120,1

그림 3-50. 임진강습곡대 중부지역 일대의 지질도(PRms: 변성섬장암, PRgrgn: 화강편마암)=120,122,1

그림 3-51. 동아시아의 중생대 단층분포(Xu Et Al., 1993)=121,123,1

그림 3-55. Hida 조사 지역의 지질도와 위치 측점=127,129,1

그림 3-56. Hida 조사지역의 지질도와 지질구조 자료=128,130,1

그림 3-57. 부우게 중력이상도와 함반도 모호면 깊이=129,131,1

그림 3-58. 위성 중자력 탐사 결과에 근거하여 최근에 새롭게 제시되고 있는 중국,황해,한반도 일대의 충돌대 궤적=130,132,1

그림 3-59. CHAMP's MF43 모델에 의한 동북아시아 지역의 항공자력이상도상의 단층과 중국-술루충돌대의 추정 궤적=131,133,1

Fig. 3-60. Okcheon Belt, Distribution Of The Okcheon Group And Study Area=133,135,1

Fig. 3-61. Published Geological Maps Of The Daejeon(Lee Et Al.,1980; Upper 1/4 Part)And Guemsan(Hong And Choi,1978; Lower 3/4 Part)Quadrangles, And Study Area=135,137,1

Fig. 3-62. New Geological Map Of The Jinsan-Boksu Area. Compare This Map With The Fig.3-61 From Lee Et Al.,(1980)And Hong&Choi(1978)=140,142,1

Fig. 3-63. Outcrops Of The F Formation Showing Primary Sedimentary Structures=141,143,1

Fig. 3-65. Photographs Of The A Formation=144,146,1

Fig. 3-66. Outcrops Of The B Formation. A) Parallel Lamination And Low-angle Cross Lamination In Fine-grained Sandstone And Siltstone, Southwest Of Odae-san(Mt.)=146,148,1

Fig. 3-67. Sedimentologic Columnar Sections For A Part Of Representative Sequence Of The C Formation. Each Scale Bar At Left Side Of Column Is 5m In Height. M: Mudstone, S: Sandstone, Brick Pattern: Limestone. Wonmuksan, Muksan-ri Jinsan-myeon=148,150,1

Fig. 3-68. Outcrops Of The C Formation=149,151,1

Fig. 3-69. General Sedimentologic Columnar Sections Of The Bibong Formation, In Bibong~Yeonmu Area(After Lim et al, 2005). Lower Part (A) And Upper Part (B) Of The Formation. M: Mudstone, S:Sandstone, Black Color: Coal Seam Or Coaly Shale=152,154,1

Fig. 3-70. A)Upper Part Of The Bibong Formation Composed Mainly Of Dark Gray To Black Slate, Shale, Siltstone And Fine Sandstone, Goknam-ri Boksu-myeon. B)A Collapsed Adit Site Where Small Coal Mine Had Been Exploited Until 1970s, Suyeong-ri=152,154,1

Fig. 3-71. Cretaceous Felsitic Rocks. A) Daedun-san(Mt.) Composed Of Felsite And Quartz Porphyry. B) Road Cut Showing Felsite Dikes And Xenoliths Of Metasedimentary Rocks In Them(Baeti-jae Pass Road)=154,156,1

Fig. 3-72. Geological Structures Developed In Jinsan~Boksu Area=156,158,1

Fig. 3-74. A Road Side Scarp On The National Road No.17, East Of Baeti-jae(Pass), Jinsan-myeon=161,163,1

Fig. 3-75. Site Scenes From Where Plant Fossils Occurred=161,163,1

Fig. 3-76a. Plant Fossils Cordaites sp. Occurred From The Bibong Formation In Seokmak-ri Jinsan-myeon.(Scale Bar:1cm)=162,164,1

Fig. 3-76b. Plant Fossils Occurred From The C Formation On Road Side Scrap Of The National Road No.17, East Of Baeti-jae(Pass), Jinsan-myeon. (One Unit Of Scale Bar:1cm). A) Cordaites sp., B)Calamites sp., C)Rhipidopsis Panji Chow=163,165,1

Fig. 3-76c. Lepidodendron Ninghsiaense Sze et Lee Occurred From The Bibong Formation At Around Of Peak, 650m ENE Of Jeopbawui Village, Muksan-ri.(Scale Bar:1cm)=164,166,1

Fig. 3-76d. Plant Fossils Occurred From Bibong Formation, Suyeong-gol Village, Suyeng-ri Boksu-myeon(Scale Bar:1cm). A) Calamites sp., B) Cordaites sp=164,166,1

Fig. 3-76e. Plant Fossils Occurred From The Bibong Formation, Near By Haengjeong Reservoir, Haengjeong-ri. Jinsan-myeon.(Scale Bar:1cm). A) Noeggerathiopsis sp., B) Cordaites sp=165,167,1

Fig. 3-77. Simplified Structural Map Of The Northern Part Of The Ogcheon Belt=177,179,1

Fig. 3-78. Geologic Map Of The Jucheon Area=181,183,1

Fig. 3-79. Outcrop Photographs=182,184,1

Fig. 3-80. Structural Map Of The Jucheon Area=183,185,1

Fig. 3-81. Outcrop Photographs Showing S1 Foliation=184,186,1

Fig. 3-82. Equal-area Stereograms Of Poles To S1 Foliation And L1, L2 Lineations For Two Domains=186,188,1

Fig. 3-83. Outcrop Photographs Of F1 Folds=187,189,1

Fig. 3-84. D2 Structures=188,190,1

그림 3-85. 남한 지질도 및 충남 보령읍 중심으로 분포하는 충남탄전 위치도=192,194,1

그림 3-86. 충남탄전 전체 지질도.1:선캠브리아의 편마암류 및 편암류, 2:하조층과 아미산층, 3:조계리층과 백운사층 4:성주리층,5:쥐라기 화강암, 6:백악기(?)화산암, 7:충적층=194,196,1

그림 3-87. 오석산 남서부 화산암과 남포층군의 지질분포도. 1:충적층, 2:오서산 남서부 화산암, 3:백운사층, 4:조계리층, 5:아미산층, 6:편암 및 편마암류=195,197,1

그림 3-88. 오서산 남서부 화산암 중에서 화산암의 암편을 가지는 라피의 응회암(a) 및 장석입자를 가지는 응회암(b)=196,198,1

그림 3-89. 오서산 남서부 화산암 중 용결응회암(Welded Tuff)과 응회암 내에 협재하는 유문암=196,198,1

그림 3-90. 서 내지 서북서 방향에서 등 내지 동남동 방향의 횡압력에 의해 충남탄전의 지질구조가 지배되면서 드러스트의 진행방향이나 습곡축이 형성되었다=197,199,1

Fig. 3-93. Cretaceous Basins In The Southern Korea=200,202,1

Fig. 3-94. Location And Lithological Maps Of The Cretaceous Jinan Basin Area=202,204,1

Fig. 3-96. Geological Map Of The Cretaceous Jinan Basin Area=204,206,1

Fig. 3-97. Structural Map Of The Cretaceous Jinan Basin Area. 1.Bedding, 2.Bedding Trace. 3.Syncline. 4.Anticline. 5.Fold Axit With Plunge. 6.Basin. 7.Dome. 8.Normal Fault. 9.Strike-slip Fault. 10.Reverse Fault. BF=Bugwi Fault. BsF=Bugwisan Fault. Gf=Geumjeong Fault. JF=Jowol Fault. MF=Maryeong Fault. SF=Sinjeong Fault. The Gray Parts Are Corresponding To The Maryeong Formation=208,210,1

Fig. 3-98. Geological Map Of The Cretaceous Yeongdon Basin Area(1. Quartz Porphyry. 2. Feldspar Porphyry(Orthophyre)=210,212,1

Fig. 3-99. Sedimentary Formations In The Yeongdong Basin=212,214,1

Fig. 3-100. Cretaceous Formations In The Yeongdong Basin. 1. Bendding. 2. Bendding Trace. 3. Syncline. 4. Fold Axis With Plunge. 5. Form Line=213,215,1

Fig. 3-101. Stress Trajectories Inferred From The Directions Of Transfer Faults=213,215,1

Fig. 3-102. Location Of Fault-Tectonic-Analysis Sites In The Jinan Basin=214,216,1

Fig. 3-104. Location Of Fault-Tectonic-Analysis Sites In The Yeongdong Basin=216,218,1

Fig. 3-105. Outcrop Photograph Of The Hadogol Site, Hwanggan (a) And The Earliest Faulting Event (b)=216,218,1

Fig. 3-106. Tectonic Environment In The Opening Of The Cretaceous Basins In The Ogcheon Belt=217,219,1

Fig. 3-107. 4 Lines Of Gravity, Magnetic And/Or MT Survey: Ansan-Gampo Line In 1999(Grav, Mag), Gunsan-Geoje Line In 2000(Grav, Mag), Dangjin-Yangsan Line In 2004(Grav, Mag), Pohang-Eumseong Line In 2005 (Grav, Mag, MT)=220,222,1

Fig. 3-108. Result Of Composite Potential Methods' Surveys Conducted In 1999 On The Line Ansan-Gampo(After Hwang et al., 1999). Upper: Magnetic, Middle: Gravity, Lower: Subsurface Cross-section Model Derived From Interactive Modelling=221,223,1

Fig. 3-109. Result Of Composite Potential Methods' Surveys Conducted In 2000 On The Line Gunsan-Geoje (After Hwang et al., 2000). Upper:Magnetic, Middle: Gravity, Lower: Subsurface Cross-section Model Derived From Interatcive Modelling=222,224,1

Fig. 3-110. Result Of Composite Potential Methods' Surveys Conducted In 2004 On The Line Daegjin-Yangsan. Upper:Magnetic, Middle: Gravity, Lower: Subsurface Cross-section Model Derived From Interatcive Modelling=223,225,1

Fig. 3-111. Result Of Composite Potential Methods' Surveys Conducted In This Study On The Line Eumseong-Pohang=226,228,1

Figure 1. Digital Elevation Model(DEM) In The Study Area. The UC San Diogo's 2-minute Data Were Gridded By Minimum Curvature=6,268,1

Figure 2. NASA/GFZ's GRACE Satellite=7,269,1

Figure 3. 2-minute Geoid Undulation Estimated At 100 Km Altitude From GRACE GGM02S Harmanic Coefficient Up To Degree And Order 120=8,270,1

Figure 4. 2-minute Free-air Gravoty Anomalies Also Estimated At 100 Km Altitude From GRACE GGM02S Harmonic Coefficient Up To Degree And Order 120=9,271,1

Figure 5. NASA's MAGSAT Satellite=11,273,1

Figrue 6. MAGSAT Data Processing=11,273,1

Figure 7. MAGSAT Orbit Distribution With The Study Area Denoted With Yellow Box=12,274,1

Figure 8. Corefield To Degree And Order 12 At 400 Km Above Sea Level. Gray Scale Is For The Intensity Of Corefield(nT), And Solid And Broken Lines Denote Declination And Inclination, Respectively=13,275,1

Figure 9. Ring Current Effects Of Dusk And Dawn Data(A,B) And Magnetic Anomalies After Ring Currents Removed (C,D)=13,275,1

Figure 10. Equatorial Electrojet Effects Of Dusk And Dawn Data (A,B) And Magnetic Anomalies After Ionospheric Corrections(C,D)=14,276,1

Figure 11. I-D Wavenumber Correlation Filtered Dusk And Dawn Anomalies (A,B) And Their Amplitude Spectra (C,D). Residual Track Noises That Were Removed By Quadrant-swapping Method Were Shown In E And F=15,277,1

Figure 12. Track-line Noise Geometries In The Spatial Domain And Corresponding Amplitude Spectrum, Where Distortions Of Wavenumbers Are Concentrated In The Fan-shaped Region That Is Centered About The Heavy Dashed Line=15,277,1

Figure 13. Magsat Tatal Field(TF) Magnetic Anomalies (A) Amd Differentially-reduced-to-the-pole TF Anomalies Of East Asia(B)=16,278,1

Figure 14. German Satellite CHAMP=17,279,1

Figure 15. Magnetic Anomalies From CHAMP's MF43 Model(Maus,2005) At 100km Elevation With Uo To Degree And Order 90=17,279,1

Figure 16. Aeromagnetic Anomagnetic Anomalies Compiled And Distributed By Geological Survey Of Japan And CCOP(1996). This Anomaly Was Adapted From Kim (2002)=18,280,1

Figure 17. Magnetic Anomalies And Tectonic Elements Of Northeast Eurasia Published By Canada(1996)=19,281,1

Figure 18. Magnetic Intensity Acquired Scanning The Original Magnetic Anomalies And Tectonic Elements Of Northeast Eurasia Published By Canada(1996) With 01 Degree Interval=20,282,1

Figure 19. Gridded Magnetic Anomaly Map By Minimum Curvature=21,283,1

Figure 20. Combined Aeromagnetic Anomalies Of The Study Area=21,283,1

Figure 23. Gravity And Magnetic Anomalies Modeling In Spherical Coordinates Of A Geologic Body(Von Frese et al., 1981a)=27,289,1

Figure 24. Flowchart Of Calculating Moho Depth By Spectral Correlating Ananysis With Gravity Anomalies And Terrain=29,291,1

Figure 26. Terrain Gravity Effects Around The Korean Peninsula. The Effects Were Estimated At 41418 Reference Points With 2 x 2 km Grids (Left). Complete Bouguer Gravity Anomalies Around The Korean Peninsula(Right)=30,292,1

Figure 27. Moho Undulations Estimated By Spectral Correlation Analysis (Left) And By Power Spectral Analysis (Right)=32,294,1

Figure 28. Amplitude Spectra Of Complete Bouguer Gravity Anomalies=33,295,1