권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
[표제지]=0,1,1
요약문=i,2,3
목차=iv,5,5
List Of Table=ix,10,2
List Of Figure=xi,12,5
Abstract=xvi,17,2
I. 소개=1,19,2
II. WHDC 역할=3,21,1
1. 세계적 동향=3,21,1
1.1 국제표준화의 필요성=3,21,1
1.2 자동차규제 표준화관련 UN 조직 결성=3,21,2
2. WHDC 조직 및 주요 업무내용=5,23,2
2.1 국제표준 시험사이클 개발=6,24,11
2.2 배출가스측정방법 연구(ISO)=16,34,2
III. 국제표준 싸이클 특성 분석=18,36,1
1. 국제 표준 Transient 싸이클 (WHTC)=19,37,2
2. 국제 표준 Steady-state 싸이클 (WHSC)=20,38,2
3. 국제표준정속운전 싸이클(WHSC) 수정(Version-Up)=21,39,8
IV. EMPA 시험방법 및 장비 소개=29,47,1
1. 시험방법 및 프로그램 구성=29,47,2
2. EMPA 시험장비 구성=30,48,2
2.1 동력계 Schenck DYNAS 680=31,49,1
2.2 주변설비=32,50,1
2.3 Full Flow CVS System과 Pierburg-120-WT=32,50,2
2.4 배출가스 분석기=33,51,2
2.5 필터의 중량 측정 장치=34,52,2
V. EMPA 상관성 시험결과=36,54,1
1. 엔진거동 및 배출가스 특성=36,54,1
1.1 엔진 1=36,54,1
1.2 엔진 2=36,54,2
1.3 엔진 3=37,55,1
1.4 엔진별 싸이클 운전특성 비교=38,56,1
1.5 엔진별 배출가스 특성 비교=38,56,4
2. 시험싸이클에 따른 배출가스 상관성 분석=41,59,1
2.1 Transient 테스트 싸이클=41,59,14
2.2 Steady State 싸이클=55,73,12
2.3 단일모드=66,84,3
3. Transient 싸이클의 운전성=68,86,2
3.1 평균 싸이클 출력=69,87,2
3.2 포인트 삭제 허용=70,88,3
3.3 회귀 분석의 결과=73,91,2
3.4 운전성 분석=74,92,1
4. 배출가스 측정 방식에 따른 상관성 분석=74,92,1
4.1 PM 측정 비교=74,92,5
4.2 가스상물질 측정 비교=79,97,4
4.3 테스트 싸이클의 비교=82,100,3
VI. 결론=85,103,2
부록=87,105,2
[부록] A. 배출가스 측정방법 비교=89,107,1
요약=89,107,2
1. 서론=91,109,1
2. 배기가스 측정 방법=91,109,1
2.1 직무와 목적=91,109,2
2.2 관련 조건=92,110,2
2.3 상관성 연구=93,111,3
3. EMPA 상관성 연구 결과=95,113,2
3.1 분류 희석 방법에서의 Transient 싸이클 운전=96,114,2
3.2 변수 분석=97,115,1
3.2.1 예비테스트=97,115,1
3.2.2 희석률=97,115,2
3.2.3 필터 면 속도=98,116,2
3.2.4 샘플 필터 로딩=100,118,1
3.2.5 샘플라인의 온도=100,118,2
3.2.6 터널 가열 50℃=101,119,2
3.2.7 샘플 라인의 길이=102,120,1
3.2.8 샘플 라인의 직경=102,120,2
3.3 통계적 검증=103,121,4
3.4 상관성 연구=106,124,5
3.5 측정 정확도=110,128,4
4. JARI 상관성 연구 결과=113,131,1
4.1 분류 희석 시스템의 Transient 싸이클 운전=113,131,1
4.2 변수 분석=113,131,2
4.3 상관성 연구=114,132,2
5. RWTUEV 상관성 연구 결과=116,134,1
5.1 샘플 프로브 구조=116,134,2
5.2 변수 분석=117,135,5
5.3 상관성 연구=122,140,3
5.4 가스상 물질의 배출가스 연구=124,142,3
6. SWRI 상관성 연구 결과=126,144,1
6.1 테스트 매트릭스=126,144,2
6.2 시험 결과=127,145,3
6.3 향후 절차=129,147,1
[[부록] B. 약어 등]=130,148,3
Figure 2-1. The Apparatus Of UN Working Group For Vehicle Harmonized Certification Regulations=4,22,1
Figure 2-2. Organization Chart Of WHDC Activities=5,23,1
Figure 2-3. Different Tasks For The Development Of Representative Engine Test Cycle=7,25,1
Figure 2-4. The Worldwide Transient Vehicle Cycle (WTVC)=13,31,1
Figure 2-5. Characteristic Engine Speeds (Engine Torque And Power At Full Load)=14,32,1
Figure 2-6. Frequency Distributions Of Engine Cycles Calculated With The Train Model On The Basis Of The WTVC For Different Engines=15,33,1
Figure 2-7. The Characteristics And Measuring Points Of WHDC, ESC, JAP Cycles=16,34,1
Figure 3-1. WHTC: Reference Values For Engine Speed And Torque=20,38,1
Figure 3-2. WHSC: Comparison Of Test Modes To WHTC Speed/Load Distribution=21,39,1
Figure 3-3. NOx Emissions Of Engine 1 On Different Versions Of WHSC=27,45,1
Figure 3-4. PM Emissions Of Engine 1 On Different Versions Of WHSC=28,46,1
Figure 5-1. Engine 1: Characteristics And Test Cycle Measuring Points=36,54,1
Figure 5-2. Engine 2: Characteristics And Test Cycle Measuring Points=37,55,1
Figure 5-3. Engine 3: Characteristics And Test Cycle Measuring Points=37,55,1
Figure 5-4. Comparison Of The NOx Emission=39,57,1
Figure 5-5. Comparison Of The PM Emission=39,57,1
Figure 5-6. Comparison Of The HC Emission=40,58,1
Figure 5-7. Comparison Of The CO Emission=40,58,1
Figure 5-8. PM Emissions Transient Test Cycles=42,60,1
Figure 5-9. SOF Emissions Transient Test Cycles=43,61,1
Figure 5-10. NOx Emissions Transient Test Cycles=43,61,1
Figure 5-11. HC Emissions Transient Test Cycles=44,62,1
Figure 5-12. CO₂Emissions Transient Test Cycles=45,63,1
Figure 5-13. CO Emissions Transient Test Cycles=45,63,1
Figure 5-14. PM Emissions Transient Test Cycles=46,64,1
Figure 5-15. NOx Emissions Transient Test Cycles=47,65,1
Figure 5-16. HC Emissions Transient Test Cycles=48,66,1
Figure 5-17. CO₂Emissions Transient Test Cycles=49,67,1
Figure 5-18. CO Emissions Transient Test Cycles=50,68,1
Figure 5-19. WHTC: Exhaust Gas Temperature=50,68,1
Figure 5-20. PM Emissions Transient Test Cycles=51,69,1
Figure 5-21. SOF Emissions Transient Test Cycles=52,70,1
Figure 5-22. NOx Emissions Transient Test Cycles=52,70,1
Figure 5-23. HC Emissions Transient Test Cycles=53,71,1
Figure 5-24. CO₂Emissions Transient Test Cycles=53,71,1
Figure 5-25. CO Emissions Transient Test Cycles=54,72,1
Figure 5-26. Particulate Emissions Steady-state Test Cycles=55,73,1
Figure 5-27. SOF Emissions Steady-state Test Cycles=56,74,1
Figure 5-28. NOx Emissions Steady-state Test Cycles=56,74,1
Figure 5-29. CO₂Emissions Steady-state Test Cycles=57,75,1
Figure 5-30. CO Emissions Steady-state Test Cycles=57,75,1
Figure 5-31. HC Emissions Steady-state Test Cycles=58,76,1
Figure 5-32. Particulate Emissions Steady-state Test Cycles=58,76,1
Figure 5-33. NOx Emissions Steady-state Test Cycles=60,78,1
Figure 5-34. CO₂Emissions Steady-state Test Cycles=60,78,1
Figure 5-35. CO Emissions Steady-state Test Cycles=61,79,1
Figure 5-36. HC Emissions Steady-state Test Cycles=61,79,1
Figure 5-37. Different Versions Of WHSC: Exhaust Gas Temperature=62,80,1
Figure 5-38. Particulate Emissions Steady-state Test Cycles=63,81,1
Figure 5-39. SOF Emissions Steady-state Test Cycles=63,81,1
Figure 5-40. NOx Emissions Steady-state Test Cycles=64,82,1
Figure 5-41. CO₂Emissions Steady-state Test Cycles=64,82,1
Figure 5-42. CO Emissions Steady-state Test Cycles=65,83,1
Figure 5-43. HC Emissions Steady-state Test Cycles=65,83,1
Figure 5-44. Engine 1: PM Emissions Single Modes=66,84,1
Figure 5-45. Engine 2: PM Emissions Single Modes=67,85,1
Figure 5-46. PM Emissions Single Modes=68,86,1
Figure 5-47. All Engines: Comparison Of The Mean Cycle Power=70,88,1
Figure 5-48. All Engines: Comparison Of Points Deleted Due To High Acceleration Rates=71,89,1
Figure 5-49. All Engines: Results Of The Torque Regression=73,91,1
Figure 5-50. All Engines: PM Emission Results On WHTC And WHSC=75,93,1
Figure 5-51. Response And Rise Times Of The Emission Analysers=79,97,1
Figure 5-52. Nitrogen Oxides: Comparison Between Raw And Diluted Measurement=80,98,1
Figure 5-53. Carbon Monoxide: Comparison Between Raw And Diluted Measurement=80,98,1
Figure 5-54. Total Hydrocarbons: Comparison Between Raw And Diluted Measurement=81,99,1
Figure 5-55. Carbon Dioxides: Relative Comparison Between Raw And Diluted Measurement=82,100,1
Figure 5-56. All Engines: NOx Emission Results=83,101,1
Figure 5-57. All Engines: CO Emission Results=83,101,1
Figure 5-58. All Engines: HC Emission Results=83,101,1
Figure 5-59. All Engines: PM Emission Results=84,102,1
Figure A-3-1. Transient Sampling During The ETC (Control Sistem PSS-20)=96,114,1
Figure A-3-2. Influence Of Dilution Ratio For The AVL System=98,116,1
Figure A-3-3. Influence Of Dilution Ratio For The CVS Full Flow System=99,117,1
Figure A-3-4. Variation Of The Filter Face Velocity With The Control Sistem Unit=99,117,1
Figure A-3-5. Influence Of The Filter Loading (Control Sistem)=100,118,1
Figure A-3-6. Sample Line Heating (Partial Flow Systems)=101,119,1
Figure A-3-7. Influence Of The Tunnel Heating (Partial Flow Systems)=102,120,1
Figure A-3-8. Influence Of The Sample Line Length (Control Sistem)=103,121,1
Figure A-3-9. Influence Of The Sample Line Diameter=103,121,1
Figure A-3-10. Correlation Between CVS And Pierburg Systems=109,127,1
Figure A-3-11. Correlation Between CVS And Pierburg System With PM Trap=110,128,1
Figure A-3-12. PM Accuracy Results At Different Modes And Test Cycles=111,129,1
Figure A-3-13. PM Relative Accuracy Results At Different Test Cycles=112,130,1
Figure A-3-14. Comparison Of PM Composition With And W/O Trap=112,130,1
Figure A-4-1. Ratio Between Partial Flow And CVS System For Different Test Cycles=114,132,1
Figure A-4-2. Correlation Between CVS And Horiba System=115,133,1
Figure A-5-1. Influence Of Dilution Ratio On PM Emission (B25 And B100)=121,139,1
Figure A-5-2. Influence Of Dilution Ratio On PM Emission (ESC And ETC)=121,139,1
Figure A-5-3. Correlation Between CVS And NOVA System=124,142,1
Figure A-5-4. Correlation Between Raw And Dilute Emissions Measurement=125,143,1
Figure A-5-5. Comparison Of Different Calculation Algorithms=126,144,1
Figure A-6-1. Correlation Between Partial Flow And CVS Systems Under Steady State Conditions=128,146,1
Figure A-6-2. Correlation Between Partial Flow And CVS Systems Under Transient Conditions=129,147,1
jpg
Figure 3-1. WHTC: Reference Values For Engine Speed And Torque=20,38,1
Figure 3-2. WHSC: Comparison Of Test Modes To WHTC Speed/Load Distribution=21,39,1
Figure 5-37. Different Versions Of WHSC: Exhaust Gas Temperature=62,80,1
Figure 5-51. Response And Rise Times Of The Emission Analysers=79,97,1
Figure A-3-1. Transient Sampling During The ETC (Control Sistem PSS-20)=96,114,1
Figure A-3-2. Influence Of Dilution Ratio For The AVL System=98,116,1
Figure A-3-3. Influence Of Dilution Ratio For The CVS Full Flow System=99,117,1
Figure A-3-4. Variation Of The Filter Face Velocity With The Control Sistem Unit=99,117,1
Figure A-3-5. Influence Of The Filter Loading (Control Sistem)=100,118,1
Figure A-3-13. PM Relative Accuracy Results At Different Test Cycles=112,130,1
Figure A-3-14. Comparison Of PM Composition With And W/O Trap=112,130,1
Figure A-5-1. Influence Of Dilution Ratio On PM Emission (B25 And B100)=121,139,1
Figure A-5-2. Influence Of Dilution Ratio On PM Emission (ESC And ETC)=121,139,1
Figure A-5-4. Correlation Between Raw And Dilute Emissions Measurement=125,143,1
Figure A-5-5. Comparison Of Different Calculation Algorithms=126,144,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.