권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
[표제지]=0,1,1
제출문=0,2,1
보고서 요약서=1,3,1
요약문=2,4,7
Summary=9,11,8
Contents=17,19,4
목차=21,23,4
List Of Figures=25,27,10
List Of Tables=35,37,2
제1장 서론=37,39,1
제1절 연구개발의 필요성=37,39,1
1. 연구개발 배경=37,39,1
2. 국내외 연구동향=38,40,1
제2장 기술개발수행 내용 및 결과=39,41,1
제1절 강원도 영동지방 대설예보지원시스템 개발=39,41,1
1. 서론=39,41,1
2. 자료 및 방법=39,41,2
3. 대설예보지원시스템의 구조=41,43,1
4. 대설예보지원시스템의 주요내용=41,43,1
가. 종관장예측=41,43,1
(1) 바람 분석=41,43,3
(2) 기압장=43,45,2
(3) 현열속시계열=45,47,2
나. 국지장예측=46,48,1
(1) 예측강수량=46,48,1
(2) 수평바람장=47,49,1
(3) 연직단면도=48,50,1
다. 검증=48,50,1
5. 결론=49,51,2
제2절 MM5의 분해능과 입력자료에 따른 겨울철 강수량 모의 민감도=51,53,1
1. 서론=51,53,2
2. 수치모델 및 모의 설계=53,55,3
3. 실험 결과 및 논의=56,58,1
가. 모델 분해능에 따른 누적 강수량 차이 분석=56,58,9
나. 초기 및 경계 입력 자료의 정밀도에 따른 누적 강수량 차이 분석=65,67,5
4./3. 찬 구름물리방안 중에서 개선된 Simple Ice 방안에 따른 누적 강수량 차이 분석=69,71,6
5./4. 결론=74,76,3
제3절 영동대설 사례에 대한 MM5 강수량 모의 검증=77,79,1
1. 서론=77,79,2
2. 자료와 방법=78,80,3
3. 실험설계와 강수유형=80,82,4
4. 모의 강수량 검증 결과=83,85,9
5. 예측 정확도가 낮은 사례의 분석=91,93,5
6./5. 결론=95,97,2
제4절 영동지역 겨울철 대설사례에 대한 수치모의(MM5, WRF) 모사 비교와 그 검증=97,99,1
1. 서론=97,99,2
2. MM5와 WRF 모델을 이용한 영동지역 대설 사례 모사 비교=99,101,1
가. 사례 선정 및 종관 분석=99,101,4
나. 수치 모델 및 모의 설계=102,104,4
다. 수치 모의 결과 및 분석=105,107,5
라. 예비적 결론=110,112,4
3. WRF 모델을 이용한 영동 지역 대설 사례의 수치 모의와 그 검증=113,115,1
가. 사례 선정 및 종관 분석=113,115,6
나. 수치 모델 및 모의 설계=118,120,2
다. 수치 모의 결과 및 분석=120,122,7
라. 결론=126,128,2
4. 종합 및 결론=127,129,2
제5절 대기경계층내의 강설의 진단 예측=129,131,1
1. 서론=129,131,1
2. 모델 및 자료=130,132,1
3. 결과=130,132,1
가. 북고남저와 서고동저의 결합형=130,132,1
(1) 종관기상분석=130,132,2
(2) 대기경계층내의 바람, 기온, 습도, 구름내 혼합비, 강수량, 강설과의 관계=131,133,4
(3) 레이디에코 및 위성사진 분석=134,136,2
나. 한반도에 저기압이 지배하는 서고동저형=135,137,1
(1) 종관기상분석=135,137,2
(2) 대기경계층내의 바람, 기온, 습도, 구름내 혼합비, 강수량, 강설과의 관계=136,138,4
다. 서고동저형=139,141,1
(1) 종관기상분석=139,141,2
(2) 대기경계층내의 바람, 기온, 습도, 구름내 혼합비, 강수량, 강설과의 관계=140,142,51
제6절 MM5 모형에서 복사 과정의 모수화 개선 : MM5 모형에 의한 모의 강수량 계산에서 상층운 효과=191,193,1
1. 서론=191,193,1
2. 복사 모형 및 빙정의 산란 특성 모수화론=191,193,1
가. 태양 복사 모수화 모형=191,193,2
나. 적외 복사 모수화 모형=192,194,2
다. 빙정의 산란 특성 모수화=194,196,3
3. 연구방법=197,199,1
가. MM5 모형=197,199,3
4. 결과 및 토의=199,201,1
가. CCM2와 개선 복사 과정에 의한 모의 강수량 비교=199,201,2
나. 상층운에 의한 모의 강수량 변화=200,202,5
5. 결론=204,206,3
제7절 영동지역 강설경향 및 2005년 3월 대설 사례분석=207,209,1
1. 서론=207,209,1
2. 자료 및 분석방법=207,209,2
3. 분석결과=209,211,1
가. 영동지역 강설 경향=209,211,3
나. 2005년 3월 대설 사례시의 종관특징=212,214,4
다. 대설과 해풍과의 연관성=215,217,2
라. 대설기간 중 하층 풍계 특성=216,218,3
4. 요약=219,221,2
제8절 강원 영동지방의 적설률 분석=221,223,1
1. 서론=221,223,1
2. 자료 및 분석방법=221,223,2
3. 분석결과=222,224,5
제9절 영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성=227,229,1
1. 서론=227,229,4
2. 자료와 방법=230,232,4
3. 현열속과 잠열속의 평균장=233,235,3
4. 강수유형별 현열속과 잠열속의 편차 분포=235,237,2
5. 성분별 분포 특성=237,239,2
6. 결론=238,240,17
제3장 참고문헌=255,257,6
Fig.1.4.1. Construction Of Heavy Snowfall Forecast Support System=42,44,1
Fig.1.4.2. Wind Distribution Page Of Heavy Snowfall Forecast Support System=43,45,1
Fig.1.4.3. Pressure Filed Page Of Heavy Snowfall Forecast Support System=44,46,1
Fig.1.4.4. Sensible Heat Flux Time Series Page Of Heavy Snowfall Forecast Support System=45,47,1
Fig.1.4.5. Amount Of Prognostic Precipitation Page Of Heavy Snowfall Forecast Support System=46,48,1
Fig.1.4.6. Horizontal Wind Page Of Heavy Snowfall Forecast Support System=47,49,1
Fig.1.4.7. Vertical Cross Section Page Of Heavy Snowfall Forecast Support System=47,49,1
Fig.1.4.8. Verification Page Of Heavy Snowfall Forecast Support System=48,50,1
Fig.2.2.1. Model Domain For Domain 1, Domain 2 And Domain 3. Also Shown Is The Model Terrain(200m Intervals) For Domain 1=53,55,1
Fig.2.3.1. Distributions Of Accumulated Precipitation Amount For 30h Period Of 1500 LST 2-2100 LST 3 February 1997 With (a) 18㎞, (b) 6㎞, and (c) 2㎞ Grid Intervals=57,59,2
Fig.2.3.2. As In Fig.2.3.1. Except For 62h Period Of 0300 LST 14-1700 LST 16 January 1998=60,62,2
Fig.2.3.3. MM5 Simulations Of Distributions Of Accumulated Precipitation Amount For 24h Period Of 0900 LST 14-0900 LST 15 January 2003 with (a) NCEP Data And (b) GDAPS Data=66,68,1
Fig.2.3.4. MM5 Simulations Of Distributions Of Accumulated Precipitation Amount For 30h Period Of 0900 LST 19-1500 LST 20 February 2003 With (a) NCEP Data And (b) GDAPS Data=68,70,1
Fig.2.3.5. MM5 Simulations Of Distributions of Accumulated Precipitation Amount For 24h Period Of 0900 LST 14-0900 LST 15 January 2003 With (a) Simple Ice Scheme And (b) A Modified Simple Ice Scheme By Hong Et Al.(2004)=71,73,1
Fig.2.3.6. As In Fig.2.3.5. Except For The Period Of 0900 LST 19-1500 LST 20 February 2003=73,75,1
Fig.3.3.1. The Model Domains For 18㎞, 6㎞, And 2㎞=81,83,1
Fig.3.4.1. Cumulative Frequency(%) Distribution Of Mountain Type Precipitation(㎜/3hr)=88,90,1
Fig.3.4.2. Same As Fig.3.4.1. Except For Cold-Coastal Type=89,91,1
Fig.3.4.3. Same As Fig.3.4.1. Except For Warm Type=89,91,1
Fig.3.4.4. Precipitation Of AWS And MM5 At (a) Daegwallyeong And (b) Gangneung For Mountain Precipitation Type=90,92,1
Fig.3.4.5. Same As Fig.3.4.4. Except For Cold-Coastal Type=90,92,1
Fig.3.4.6. Same As Fig.3.4.4. Except For Warm Type=90,92,1
Fig.3.4.7. Distribution Of Simulated Precipitation(㎜/3hr) On (a) Mountain(13) And (b) Cold-Coastal(20) Precipitation Type At Gangneung And Daegwallyeong=91,93,1
Fig.3.4.8. Same As Fig.3.4.7. Except For Observed Precipitation=91,93,1
Fig.3.5.1. Accumulated Precipitation Of Model Simulation For (a) OISST And (b) MCSST Treatment(From 06UTC 24 To 12UTC 25 January 2000)=94,96,1
Fig.3.5.2. Time Series Of Vertical Wind Profile At (a) Daegwallyeong And (b) Gangneung For 30 Hours(From 06UTC 24 To 12UTC 25 January 2000)=95,97,1
Fig.4.2.1. Surface Weather Charts At (a) 00UTC 07 December 2002, (b) OOUTC 09 December 2002=100,102,1
Fig.4.2.2. The Same As In Fig.4.2.1. Except For 850 hPa Level Weather Charts=100,102,1
Fig.4.2.3. The Same As In Fig.4.2.1. Except For 500 hPa Level Weather Charts=100,102,1
Fig.4.2.4. Time Series Of Accumulated Every 3 Hours Precipitation At Daegwallyeong(Black) And Gangneung(White)=101,103,1
Fig.4.2.5. Time Series Of Observed Every Hour Wind Direction At Daegwallyeong(Black Spot) And Gangneung(White Spot)=101,103,1
Fig.4.2.6. Composite Anomalies Of Sea Level Pressure At 1000 hPa For 00 UTC 08 December 2002=102,104,1
Fig.4.2.7. Model Domain For Domain 1, Domain 2, Domain 3=103,105,1
Fig.4.2.8-a. Time Series Of Wind Direction At Daegwallyeong For Case Of 7-9 December, 2002. Circle, Square, Triangular Is Observation, MM5, WRF, Respectively=105,107,1
Fig.4.2.8-b. The Same As In Fig.4.2.8-a. Except At Gangneung=105,107,1
Fig.4.2.9-a. The Same As In Fig.4.2.8-a. Except For Wind Speed=107,109,1
Fig.4.2.9-b. The Same As In Fig.4.2.8-b. Except For Wind Speed=107,109,1
Fig.4.2.10-a. Time Series Of 3 Hours Observed Precipitation For 7-9 December, 2002. Black, Gray Sticks Are At Daegwallyeong, Garigneung, Respectively=108,110,1
Fig.4.2.10-b. Time Series Of 3 Hours MM5 Simulated Precipitation For 7~9 December, 2002. Black, Dark Gray With Oblique Stripe, Gray, White Gray With Oblique Stripe Sticks Are Daegwallyeong(Domain 2), Daegwallyeong(Domain 3), Gangneung(Domain 2), Gangneung=108,110,1
Fig.4.2.11-a. The Same As In Fig.4.2.10-a=109,111,1
Fig.4.2.11-b. The Same As In Fig.4.2.10-b. Except Of WRF Simulated Precipitation=109,111,1
Fig.4.2.12-a. Time Series Of Accumulated Precipitation For Domain 2 At Daegwallyeong For 7~9 December, 2002=111,113,1
Fig.4.2.12-b. The Same As In Fig.4.2.12-a. Except For Domain 3=111,113,1
Fig.4.2.13-a. The Same As In Fig.4.2.12-a. Except At Gangneung=112,114,1
Fig.4.2.13-b. The Same As In Fig.4.2.12-b. Except At Gangneung=112,114,1
Fig.4.2.14. Distributions Of Total Accumulated Precipitation Amount(10㎜ Intervals) For Case 7~9 December, 2002. A And B Are MM5, WRF Model Output, Respectively=112,114,2
Fig.4.3.1-a. Time Series Of Accumulated Precipitation At 5 Stations, Gangneung(Circle Spots), Deagwallyeong(Square Spots), Donghae(Triagle Spots), Sokcho(Empty Circle Spots), Taebaek(Empty Square Spots), In Yeongdong Region For 4~5 March, 2005=114,116,1
Fig.4.3.1-b. Total Amount Of Accumulated Snow Amount At 5 Stations, Gangneung(Black Stick), Deagwallyeong(Gray Stick), Donghae(Dark Gray Stick With Oblique Stripe), Sokcho(Light Gray Stick With Oblique Stripe), Taebaek(Black Stick With Horizontal Stripe),=114,116,1
Fig.4.3.2. Synoptic Surface Weather Charts At (a) OOUTC 04 March 2005, (b) OOUTC 05 March 2005=115,117,1
Fig.4.3.3. The Same As In Fig.4.3.1. Except For 850 hPa Level Weather Charts=115,117,1
Fig.4.3.4. The Same As In Fig.4.3.1. Except For 500 hPa Level Weather Charts=115,117,1
Fig.4.3.5-a. Time Series Of Accumulated Every 2 Hours Precipitation At Daegwallyeong(Black) And Gangneung(Gray) For 4~5 March, 2005=117,119,1
Fig.4.3.5-b. Time Series Of Observed Every Hour Wind Direction At Daegwallyeong(Square) And Gangneung(Circle) For 4~5 March, 2005=117,119,1
Fig.4.3.6. Model Domain For Domain 1, Domain 2, Domain 3=119,121,1
Fig.4.3.7. Time Series Of Accumulated Precipitation At 5 Stations In Yeongdong Region For 4~5 March, 2005=120,122,1
Fig.4.3.8-a. Time Series Of Accumulated Precipitation At Gangneung For 4~5 March, 2005. Circle And Square Spots Are Observation, WRF Model Output, Respectively=122,124,1
Fig.4.3.8-b. The Same As In Fig.4.3.7-a. Except At Deagwallyeong=122,124,1
Fig.4.3.8-c. The Same As In Fig.4.3.7-a. Except At Donghae=122,124,1
Fig.4.3.9. Distributions Of Total Accumulated Precipitation Amount(5㎜ Intervals) For Case 4~5 March, 2005. (a) And (b) Are Domain 2, Domain 3, Respectively=123,125,1
Fig.4.3.10. Distributions Of U,V Horizontal Wind Vectors At OOUTC 4 March, 2005. A And B Are Domain 2, Domain 3, Respectively=123,125,1
Fig.4.3.11-a. The Vertical Profiles Of U-V Wind Vectors Of Observation At Gangneung From 0000 LST March 4, 2005. Shading Intensity Is U-Vector Component=124,126,1
Fig.4.3.11-b. The Same As In Fig.4.3.10-(a) Except Of WRF Model Output=124,126,1
Fig.4.3.12. Distributions Of U,V Horizontal Wind Vectors At 00UTC 4 March, 2005. Solid Line Pass Through Daegwallyeong, Gangneung, And 37.97N, 129.4E Locations=126,128,1
Fig.4.3.13. The Same As In Fig.4.3.10-(b). Except At 37.97N, 129.4E=126,128,1
Fig.5.3.1. (a) Surface Weather Map At 0900 LST, (b) 2100LST, January 15, (c) 0900 LST, (d) 2100 LST, January 16, 2005=143,145,1
Fig.5.3.2./9.3.2. (a) Surafec Weather Map At 0900 LST, (b) 2100LST, January 15, (c) 0900 LST, (d) 2100 LST, January 16, 2005=144,146,1
Fig.5.3.3. Horizontal Distribution Of Surface Wind (m/s) (10m Height) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=145,147,1
Fig.5.3.4. As Shown In Fig.5.3.3, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=146,148,1
Fig.5.3.5. Horizontal Distriburion Of Air Temeperature(℃)(10m Height) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=147,149,1
Fig.5.3.6. As Shown In Fig.5.3.5, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=148,150,1
Fig.5.3.7. Horizontal Distribution Of Relative Humidity(%)(10m Height) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=149,151,1
Fig.5.3.8. As Shown In Fig.5.3.7, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=150,152,1
Fig.5.3.9. Vertical Distribution Of Horizontal Wind(m/s), Air Temperature(℃) And Relative Humidity(%) On A Straight Cutting Line From Left(Grid 35-Mt. Daegwallyeong) To Right(Gangneung City) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 03=151,153,1
Fig.5.3.10. As Shown In Fig.5.3.9, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=152,154,1
Fig.5.3.11. Vertical Distribution Of Total Cloud Mixing Ratio(g/㎏) And Air Temperature(℃) On A Straight Cutting Line From Left(Grid 35-Mt. Daegwallyeong) To Right(Gangneung City) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, Janu=153,155,1
Fig.5.3.12. As Shown In Fig.5.3.11, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=154,156,1
Fig.5.3.13. Horizontal Distribution Of Total Precipitation Amount In The Past 3 Hours(㎜) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=155,157,1
Fig.5.3.14. As Shown In Fig.5.3.13, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=156,158,1
Fig.5.3.15. Horizontal Distribution Of Sensible Heat Flux(W/m²)(10m Height) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=157,159,1
Fig.5.3.16. As Shown In Fig.5.3.15, Except For At (a) 0600LST, (b) 0900LST, (c)1200LST And (d) 1500LST, January 16, 2005=158,160,1
Fig.5.3.17. Horizontal Distribution Of Latent Heat Flux(W/m²)(10m Height) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005 Near Gangneung City(60, 60)=159,161,1
Fig.5.3.18. As Shown In Fig.5.3.17, Except For At (a) 0600LST, (b) 0900LST, (c)1200LST And (d) 1500LST, January 16, 2005=160,162,1
Fig.5.3.19. Radar Echo(㎜/h) At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST And (d) 0300LST, January 16, 2005=161,163,1
Fig.5.3.20. As Shown In Fig.5.3.19, Except For At (a) 0600LST, (b) 0900LST, (c) 1200LST And (d) 1500LST, January 16, 2005=162,164,1
Fig.5.3.21. GOES-9 IR Picture At (a) 1800LST, (b) 2100LST, January 15, (c) 0000LST, (d) 0300LST, January 16, 2005=163,165,1
Fig.5.3.22. As Shown In Fig.5.3.21, Except For (a) 0600LST, (b) 0900LST, (c) 1200LST, (d) 1500LST, January 16, 2005=164,166,1
Fig.5.3.23. Horizontal Distribution Of Total Precipitation Amount In The Past 3 Hours(㎜) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, February 16, 2005=165,167,1
Fig.5.3.24. Horizontal Distribution Of Sensible Heat Flux(W/m²)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, February 16, 2005=166,168,1
Fig.5.3.25. Horizontal Distribution Of Latent Heat Flux (W/m²)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, February 16, 2005=167,169,1
Fig.5.3.26. GOES-9 Satellite Picture (a) 0900LST, (b) 1200LST, (c) 1500LST And (d) 1800LST, February 16, 2005=168,170,1
Fig.5.3.27. Surafce Weather Chart At (a) 0900LST, (b) 2100LST, March 4, (c) 0900LST And (d) 2100LST, March 5 2005=169,171,1
Fig.5.3.28. 850hPa Weather Chart At (a) 0900LST, (b) 2100LST, March 4, (c) 0900LST And (d) 2100LST, March 5 2005=170,172,1
Fig.5.3.29. Horizontal Distribution Of Surface Wind (m/s)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=171,173,1
Fig.5.3.30. As Shown In Fig.5.3.29, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=172,174,1
Fig.5.3.31. Horizontal Distribution Of Air Temperature(℃)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=173,175,1
Fig.5.3.32. As Shown In Fig.5.3.31, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=174,176,1
Fig.5.3.33. Horizontal Distribution Of Relative Humidity(%)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=175,177,1
Fig.5.3.34. As Shown In Fig.5.3.33, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=176,178,1
Fig.5.3.35. Vertical Distribution Of Horizontal Wind(m/s), Air Temperature(℃) And Relative Humidity(%) On A Straight Cutting Line From Left(Grid 35-Mt. Daegwallyeong) To Right(Gangneung City) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, Marc=177,179,1
Fig.5.3.36. As Shown In Fig.5.3.35, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=178,180,1
Fig.5.3.37. Vertical Distribution Of Total Cloud Mixing Ratio(g/㎏) And Air Temperature(℃) On A Straight Cutting Line From Left(Grid 35-Mt. Daegwallyeong) To Right(Gangneung City) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=179,181,1
Fig.5.3.38. As Shown In Fig.5.3.37, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=180,182,1
Fig.5.3.39. Horizontal Distribution Of Total Precipitation Amount In The Past 3 Hours(㎜) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=181,183,1
Fig.5.3.40. As Shown In Fig.5.3.39, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=182,184,1
Fig.5.3.41. Horizontal Distribution Of Sensible Heat Flux(W/m²)(10m Height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=183,185,1
Fig.5.3.42. As Shown In Fig.5.3.41, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=184,186,1
Fig.5.3.43. Horizontal Distribution Of Latent Heat Flux(W/m²)(10m height) At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 4, 2005=185,187,1
Fig.5.3.44. As Shown In Fig.5.3.43, Except For At (a) 0000LST, (b) 0600LST, (c) 1200LST And (d) 1800LST, March 5, 2005=186,188,1
Fig.5.3.45. Radar Echo(㎜/h) (a) 0000LST, (b) 0600LST, (c) 1200LST, (d) 1800, March 4, 2005=187,189,1
Fig.5.3.46. As Shown In Fig.5.3.45, Except For (a) 0000LST, (b) 0600LST, (c) 1200LST And 1800LST, March 5, 2005=188,190,1
Fig.5.3.47. GOES-9 Satellite Picture At (a) 0000LST, (b) 0600LST, (c) 1200LST, (d) 1800, March 4, 2005=189,191,1
Fig.5.3.48. As Shown In Fig.5.3.47, Except For (a) 0000LST, (b) 0600LST, (c) 1200LST And 1800LST, March 5, 2005=190,192,1
Fig.6.2.1. Idealized Shapes Of The Ice Crystal Habits. From Left : Plate, Column, Hollow-Column, Bullet-Rosette, Spheroid, Aggregate, And Droxtal=195,197,1
Fig.6.2.2. Effective Size Of Ice Crystal For Sample Cloud And Habits=196,198,1
Fig.6.3.1. Model Domain Configuration=198,200,1
Fig.6.3.2. The Diagram Of Seeding Effect(a) And Mixing Effect(b)=198,200,1
Fig.6.3.3. The Observational 3-hr Precipitation(㎜) On 5 Dec. 2002 And 7 Jan 2001, Respectively=199,201,1
Fig.6.4.1. The Accumulated Precipitation Amount(a) And Percent Differences(b-d) Between CCM2 Radiation Code And Present Study In MM5 Simulation On 06UTC 6 Dec. 2002. The Units Are ㎜=200,202,1
Fig.6.4.2. Same As Fig.6, Except For Cloud Liquid And Ice Water(g/㎏) Of Gangneung From 12UTC 4 Dec. 2002 To OOUTC 6 Dec. 2002=200,202,1
Fig.6.4.3. The Relative Humidity(Upper Panels, %), Cloud Liquid And Ice Water(Mid Panels, g/㎏) And U-Component Wind(Lower Panels, m/s) At Gangneung Simulated By With The Seeding(Left Panels) And Without Seeding(Right Panels) Of Upper Cloud Drops From 12U=202,204,1
Fig.6.4.4. The Accumulated Precipitation(Upper Panels, ㎜), Cloud Liquid And Ice Water(Mid Panels, g/㎏) And U-Component Wind(Lower Panels, m/s) At Gangneung By MM5 Model Simulation, And Their Differences Between With The Reference Relative Humidity And W=203,205,1
Fig.6.4.5. The Seeding(a) And Mixing(b) Effect By MM5 Simulation At Gangneung On 5 Dec. 2002 And 7 Jan. 2002, Respectively=204,206,1
Fig.7.3.1. Accumulated Snow Fall Amount(㎝) And Snow Fall Intensity(㎝ Day-1) For Gangneung And Seoul During 11/1~3/31(이미지참조)=210,212,1
Fig.7.3.2. Normalized Snow Fall Amount And Normalized Snow Fall Intensity For Gangneung And Seoul During 11/1~3/31=211,213,1
Fig.7.3.3. Synoptic Charts(Surface, 500, And 300hPa) For March 3~5, 2005=213,215,1
Fig.7.3.4. Synoptic Charts(Surface, 500, And 300hPa) For December 19~21, 2005=214,216,1
Fig.7.3.5. Horizontal Distributions Of Snow Fall Amount(㎝) On 2005. 3. 4 And 3. 5=214,216,1
Fig.7.3.6. Temporal Variations Of Temperature At Gangneung, Daegwallyeong, SockCho, And Donghae From March 1 To 8, 2005=215,217,1
Fig.7.3.7. Skew-T LogP Diagram Observed At Sockcho On OOUTC(Blue Line) And 12UTC(Red Line), March 4, 2005=217,219,1
Fig.7.3.8. Same As In Fig.2.3.7. Except For March 24, 2005=217,219,1
Fig.8.3.1. When Surface And 850 hPa Is All Sub-Zero Temperature, Rainfall And New Snowfall Relation At Sokcho, Gangneung And Donghae(Rainfall : 0.1㎜, New Snowfall : 0.1㎝)=223,225,1
Fig.8.3.2. When Surface And 850 hPa Is All Sub-Zero Temperature, Rainfall And New Snowfall Relation At Daegwallyeong And Taebak(Rainfall : 0.1㎜, Snowfall: 0.1㎝)=224,226,1
Fig.9.3.1. Distribution Of (a) Mean NOAA/AVHRR Weekly SST Data And (b) Mean NCEP/NCAR Reanalysis Surface Air Temperature Data For January. Contour Interval Is 2℃=240,242,1
Fig.9.3.2. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For January. Contour Interval Is 20 W/m²=241,243,1
Fig.9.3.3. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For February. Contour Interval Is 20 W/m²=242,244,1
Fig.9.3.4. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For December. Contour Interval Is 20 W/m²=243,245,1
Fig.9.4.1. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For 2 Precipitation Events Classified Into The Mountain Type. Contour Interval Is 20 W/m²=244,246,1
Fig.9.4.2. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For 9 Precipitation Events Classified Into The Cold-Coast Precipitation Type. Contour Interval Is 20 W/m²=245,247,1
Fig.9.4.3. Distribution Of (a) Mean Sensible Heat Flux And (b) Mean Latent Heat Flux For 8 Precipitation Events Classified Into The Warm Precipitation Type. Contour Interval Is 20 W/m²=246,248,1
Fig.9.4.4. Distribution Anomalies Mean Of (a) Sensible Heat Flux And (b) Latent Heat Flux For 2 Precipitation Events Classified Into The Mountain Type. Contour Interval Is 20 W/m²=247,249,1
Fig.9.4.5. Distribution Anomalies Mean Of (a) Sensible Heat Flux And (b) Latent Heat Flux For 9 Precipitation Events Classified Into The Cold-Coast Precipitation Type. Contour Interval Is 20 W/m²=248,250,1
Fig.9.4.6. Distribution Anomalies Mean Of (a) Sensible Heat Flux And (b) Latent Heat Flux For 8 Precipitation Events Classified Into The Warm Precipitation Type. Contour Interval Is 20 W/m²=249,251,1
Fig.9.5.1. Distribution Of Wind Component, CsV(To-Ta) (a) And Temperature Component, CsV(To'-Ta') (b) Of The Sensible Heat Anomaly For The Mountain Precipitation Type. Contour Interval Is 20 W/m²(이미지참조)=250,252,1
Fig.9.5.2. Distribution Of Wind Component, CLV(qo'-qa') (a) And Humidity Component, CLV(qo'-qa') (b) Of The Latent Heat Anomaly For The Mountain Precipitation Type. Contour Interval Is 20 W/m²(이미지참조)=251,253,1
Fig.9.5.3. Distribution Of Wind Component, CsV(To-Ta) (a) And Temperature Component, CsV(To'-Ta') (b) Of The Sensible Heat Anomaly For The Cold-Coast Precipitation Type. Contour Interval Is 20 W/m²(이미지참조)=252,254,1
Fig.9.5.4. Distribution Of Wind Component, CLV(qo-qa) (a) And Humidity Component, CLV(qo'-qa') (b) Of The Latent Heat Anomaly For The Cold-Coast Precipitation Type. Contour Interval Is 20 W/m²(이미지참조)=253,255,1
영문목차
[title page etc.]=0,1,3
Summary(Korean)=2,4,7
Summary=9,11,8
Contents=17,19,4
Contents(Korean)=21,23,4
List Of Figures=25,27,10
List Of Tables=35,37,2
Chapter1. Introduction=37,39,1
Section1. Necessity Of The Research=37,39,1
1. Background Of The Research=37,39,1
2./1. The Status Of Domestic And International Research=38,40,1
Chapter2. Results Of The Research=39,41,1
Section1. Development Of Gangwon Heavy Snowfall Forecast Support System=39,41,1
1. Introduction=39,41,1
2. Materials And Methods=39,41,2
3. Structures Of The Gangwon Heavy Snowfall Forecast Support System=41,43,1
4. Main Contents=41,43,1
A. Synoptic Fields=41,43,1
(1) Analysis Of Wind=41,43,3
(2) Track Of Pressure=43,45,2
(3) Time Series Of Sensible Heat Flux=45,47,2
B. Local Fields=46,48,1
(1) Prediction Of Rainfall=46,48,1
(2) Horizontal Distribution Of Wind=47,49,1
(3) Vertical Section=48,50,1
C. Verifications=48,50,1
5. Conclusions=49,51,2
Section2. The Sensitivity Of The Winter Precipitation Simulation To The Resolutions Of The MM5 Model And Input Data=51,53,1
1. Introduction=51,53,2
2. Numerical Model And Simulation Design=53,55,3
3. Experimental Results And Discussion=56,58,1
A. Analysis On The Difference Of The Accumulated Precipitation According To The Model Resolutions=56,58,9
B. Analysis On The Differences Of The Accumulated Precipitation According To The Resolutions Of The Initial And Boundary Conditions=65,67,5
4./3. Compared With Simulations Using The Simple Ice Scheme By Dudhia(1989), Those Using The Modified Simple Ice Scheme By Hong Et Al.(2004)=69,71,6
5./4. Conclusions=74,76,3
Section3. Verification Of MM5 Precipitation Forecasts Related With Heavy Snowfall Events In Yeongdong Region=77,79,1
1. Introduction=77,79,2
2. Materials And Methods=78,80,3
3. Experimental Design And Precipitation Type=80,82,4
4. Results Of Verification=83,85,9
5. Events With Low Accurate Prediction=91,93,5
6./5. Conclusions=95,97,2
Section4. MM5 And WRF Simulations Of Yeongdong Heavy Snowfall Events, Comparison, And Validation=97,99,1
1. Introduction=97,99,2
2. Comparison Of MM5 And WRF Simulations For Yeongdong Heavy Snowfall Events=99,101,1
A. Case Selection And Synoptic Analysis=99,101,4
B. Model Description And Experimental Eesign=102,104,4
C. Analysis Of The Results=105,107,5
D. Preliminary Conclusion=110,112,4
3. Validation Of WRF Simulation For A Yeongdong Heavy Snowfall Event=113,115,1
A. Case Selection And Synoptic Analysis=113,115,6
B. Model Description And Experimental Design=118,120,2
C. Analysis of the results=120,122,7
D. Conclusion=126,128,2
4. Comprehensive Conclusion=127,129,2
Section5. Diagnostic Prediction Of Snowfall In The Atmospheric Boundary Layer=129,131,1
1. Introduction=129,131,1
2. Model And Material=130,132,1
3. Results=130,132,1
A. Coupling Of High Pressure In North And Low Pressure In South=130,132,1
(1) Analysis Of Wind=130,132,2
(2) Relation Of Rainfall And Snowfall Amounts To Wind, Air Temperature, Relative Humidity And Cloud Mixing Ratio=131,133,4
(3) Analysis Of Radar Echo And Satellite Picture=134,136,2
B. High Pressure In West And Low Pressure In East Under The Control Of Low Pressure System In Korean Peninsula=135,137,1
(1) Synoptic Meteorological Analysis=135,137,2
(2) Relation Of Rainfall And Snowfall Amounts To Wind, Air Temperature, Relative Humidity And Cloud Mixing Ratio=136,138,4
C. High Pressure In West And Low Pressure In East=139,141,1
(1) Synoptic Meteorological Analysis=139,141,2
(2) Relation Of Rainfall And Snowfall Amounts To Wind, Air Temperature, Relative Humidity And Cloud Mixing Ratio=140,142,51
Section6. Improvement Of Radiative Transfer Parameterization In MM5 Model : Variance Of Simulated Prediction Of MM5 Model With Scattering Effect Of Ice Cloud=191,193,1
1. Introduction=191,193,1
2. Radiative Transfer Model And Ice Crystal Scattering Property=191,193,1
A. Shortwave Radiative Transfer Model=191,193,2
B. Longwave Radiative Transfer Model=192,194,2
C. Parameterization Of Single Scattering Property Of Ice Crystal=194,196,3
3. Methodology=197,199,1
A. MM5 Model Description=197,199,3
4. Result And Discussion=199,201,1
A. Comparison Of Simulated Precipitation Between CCM2 And Developed Model=199,201,2
B. Precipitation Change On High Cloud Effect=200,202,5
5. Conclusion=204,206,3
Section7. General Trend Of Snow Fall Amount And Intensive Analysis For March Of 2005=207,209,1
1. Introduction=207,209,1
2. Data And Method=207,209,2
3. Results=209,211,1
A. General Trend Of The Yeoungdong Region=209,211,3
B. Synoptic Characteristics Of The Heavy Snow Fall In March Of 2005=212,214,4
C. Association Of The Heavy Snow Fall With The Sea Breeze=215,217,2
D. Characteristics Of Low-Level Wind Field=216,218,3
4. Summary=219,221,2
Section8. Analysis Of Snow Ratio In Yeongdong Region, Gangwon=221,223,1
1. Introduction=221,223,1
2. Materials And Methods=221,223,2
3. Results=222,224,5
Section9. Characteristics Of Sensible Heat And Latent Heat Fluxes Over The East Sea Related With Yeongdong Heavy Snowfall Events=227,229,1
1. Introduction=227,229,4
2. Materials And Methods=230,232,4
3. Averaging Distribution Of Sensible And Latent Heat Flux=233,235,3
4. Anomaly Distribution Of Sensible And Latent Heat Flux Each Type=235,237,2
5. Characteristics Of Componental Distribution=237,239,2
6. Conclusions=238,240,17
Chapter3. References=255,257,6
jpg
Fig.4.2.10-a. Time Series Of 3 Hours Observed Precipitation For 7-9 December, 2002. Black, Gray Sticks Are At Daegwallyeong, Garigneung, Respectively=108,110,1
Fig.4.2.10-b. Time Series Of 3 Hours MM5 Simulated Precipitation For 7~9 December, 2002. Black, Dark Gray With Oblique Stripe, Gray, White Gray With Oblique Stripe Sticks Are Daegwallyeong(Domain 2), Daegwallyeong(Domain 3), Gangneung(Domain 2), Gangneung=108,110,1
Fig.4.2.11-a. The Same As In Fig.4.2.10-a=109,111,1
Fig.4.2.11-b. The Same As In Fig.4.2.10-b. Except Of WRF Simulated Precipitation=109,111,1
Fig.7.3.1. Accumulated Snow Fall Amount(㎝) And Snow Fall Intensity(㎝ Day-1) For Gangneung And Seoul During 11/1~3/31(이미지참조)=210,212,1
Fig.7.3.2. Normalized Snow Fall Amount And Normalized Snow Fall Intensity For Gangneung And Seoul During 11/1~3/31=211,213,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.