본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

목차

[표제지]=0,1,1

제출문=1,2,1

요약문=2,3,12

Summary=14,15,2

Contents=16,17,7

목차=23,24,6

List of Figures=29,30,13

List of Tables=42,43,5

제1장 서론=47,48,1

제1절 연구 배경 및 필요성=47,48,1

1. 연구개발의 목적 및 필요성=47,48,2

2. 국내ㆍ외 관련기술의 현황=48,49,2

3. 국내ㆍ외 유사기술과의 차별성=50,51,1

제2절 연구목표 및 범위=51,52,3

제2장 국내ㆍ외 기술개발 현황=54,55,1

제1절 염색폐수의 특성=54,55,1

1. 염색공정 및 염색폐수의 특성=54,55,6

2. 염료의 종류 및 특성=60,61,4

3. 염색폐수의 처리 방법=64,65,4

4. 국내의 염색폐수 처리공정=68,69,1

제2절 미생물 고정화법=69,70,1

1. 미생물 고정화법의 연구배경 및 필요성=69,70,2

2. 미생물 고정화법의 종류 및 원리=71,72,6

제3절 염색폐수의 생물학적 처리 및 생물막 공정=77,78,1

1. 염색폐수의 생물학적 처리=77,78,1

가. 호기성 처리법=77,78,2

나. 혐기성 처리법=78,79,4

다. 혐기/호기 처리법=81,82,2

2. 생물막 공정=83,84,1

가. 호기성 생물막 공정=83,84,3

나. 혐기성 생물막 공정=85,86,2

제4절 고급산화공정 및 활성탄 흡착=87,88,1

1. 고급산화공정=87,88,1

가. 고급산화공정의 정의=87,88,3

나. 폐수처리에서의 OH radical의 중요성=90,91,2

다. 고급산화공정의 분류=92,93,2

2. 펜톤산화 공정=94,95,1

가. 펜톤산화의 반응 메카니즘=94,95,3

나. 펜톤산화 공정을 이용한 유기물의 산화 처리=97,98,2

3. 오존산화 공정=99,100,1

가. 오존의 분해 메카니즘=99,100,3

나. Ozone/High pH AOP=101,102,2

다. Ozone/H₂O₂ AOP(PEROXONE)=103,104,2

라. Ozone/UV AOP=104,105,2

4. 활성탄 흡착=106,107,1

가. 흡착 이론=106,107,1

나. 흡착평형식=107,108,3

다. 흡착탑의 파과=109,110,2

제3장 연구개발수행 내용 및 결과=111,112,1

제1절 난분해성 염색폐수의 효율적 고도처리 공정개발=111,112,1

1. 염색폐수의 공정별 성상분석=111,112,2

가. 시료의 채취 및 분석방법=112,113,2

나. 결과 및 고찰=113,114,14

다. 연구결과 요약=126,127,2

2. 난분해성 염색폐수의 분해균주 개발=128,129,1

가. 시료의 채취=129,130,2

나. 균주 분리 및 배양=130,131,2

다. 균주 동정=132,133,8

라. 미생물 분리동정 결과=140,141,7

마. 연구결과 요약=147,148,1

3. 고정화담체의 소재 개발 및 제조 기술=148,149,1

가. 담체의 소재 개발 및 합성=148,149,25

나. 담체합성기의 제작 및 적용=173,174,4

다. 연구결과 요약=177,178,2

4. 고정화담체의 모니터링 및 개선 방안=179,180,1

가. 질산화 담체의 모니터링=179,180,6

나. SBR 반응기에 적용된 고정화담체의 모니터링=185,186,4

다. 고정상 반응기와 유동상 반응기에 적용된 고정화담체의 모니터링=188,189,7

라. 고정화담체의 개선방안(비중 향상)=195,196,2

마. 연구결과 요약=197,198,1

5. 고정화담체 공정을 이용한 염색폐수의 처리=198,199,1

가. 부유성장 미생물을 이용한 SBR 운전=198,199,13

나. 고정화담체 공정을 이용한 염색폐수의 처리(SBR 운전)=211,212,5

다. 고정화담체 공정을 이용한 염색폐수의 처리(Lab-Scale 반응기)=216,217,15

라. 고정화담체 공정을 이용한 염색폐수의 처리(Pilot Plant)=231,232,12

마. 연구결과 요약=243,244,4

6. 고급산화공정을 이용한 염색폐수의 처리=247,248,1

가. 오존산화 공정=247,248,17

나. 활성탄 흡착 및 펜톤산화 공정=264,265,14

다. 연구결과 요약=278,279,2

7. 혐기 전처리를 이용한 고정화담체 공정개발=280,281,2

가. 혐기성 반응기를 이용한 염색폐수의 색도 처리=281,282,10

나. 호기성 반응기를 이용한 염색폐수의 난분해성 물질 처리=291,292,15

다. 연구결과 요약=305,306,2

제2절 기존 염색폐수처리장의 개선에 직합한 공정개발=307,308,1

1. 기존 염색폐수처리장의 현황과 문제점=307,308,1

가. 폐수처리장 현황=307,308,5

나. 폐수처리장 운전 현황=312,313,5

다. 폐수처리장 공정 분석=317,318,5

라. 연구결과 요약=322,323,1

2. 생물학적 처리공정의 개선 방안=323,324,1

가. 담체 충진율에 따른 유기물 제거 회분식 실험=323,324,6

나. 담체 충진율에 따른 유기물 제거 Pilot Plant 실험=328,329,16

다. Pilot Plant와 순산소포기조 유출수의 펜톤산화 처리비용 비교=344,345,3

라. 연구결과 요약=346,347,2

3. 반월염색조합 공동폐수처리장의 공정 개선안=348,349,1

가. 폐수처리장 개선목적=348,349,1

나. 단위공정별 평균제거율을 고려한 공정개선 후 예측수질=349,350,2

다. 최종 개선안 및 경제성 분석=351,352,2

4. 펜톤산화 운전인자 최적화를 위한 기초 연구=353,354,1

가. 펜톤시약의 주입량 절감을 위한 최적 주입 조건 도출=353,354,10

나. 응집 및 펜톤산화에 의한 최적 처리방안 도출=363,364,9

다. 연구결과 요약=372,373,1

5. 펜톤산화 공정의 최적화 연구=373,374,1

가. 반월염색폐수처리장의 펜톤산화 처리 현황=373,374,2

나. 펜톤산화조 공정 분석=375,376,5

다. 펜톤산화 및 Ferric Coagulation의 비교 실험=380,381,4

라. 철 응집과 펜톤산화의 연계처리=384,385,6

마. 연구결과 요약=390,391,1

6. 3가철을 이용한 유사펜톤 공정 연구=391,392,1

가. 유사펜톤 반응에서 Fe(III)의 종류에 따른 염료 제거효율 비교=391,392,2

나. 유사펜톤 반응을 이용한 실제염색폐수의 처리=393,394,6

다. 연구결과 요약=398,399,1

7. 폐수내 용존 TiO₂의 영향 연구=399,400,1

가. TiO₂/UV 시스템의 개요=399,400,2

나. 펜톤산화 공정에서 Fe2+와 Fe3+의 염료 분해효과 비교(이미지참조)=401,402,2

다. UV광이 펜톤산화 공정에 미치는 영향=402,403,2

라. UV광이 유사펜톤 공정에 미치는 영향=403,404,2

마. TiO₂ 농도의 영향=404,405,2

바. 실폐수의 분해에 대한 Hisol의 효과=405,406,2

사. 용존 Ti4+이 염색폐수의 광분해에 미치는 영향(이미지참조)=406,407,2

아. TiO₂의 광분해에 따른 염료의 성상 변화=408,409,2

자. 연구결과 요약=410,411,1

제3절 요소기술의 상품화 및 활용방안 연구=411,412,1

1. 국가별 배출허용기준 수준에 적합한 공정개발 연구=411,412,5

2. 개발된 고정화담체 공정의 타 폐수에 대한 활용가능성 평가=416,417,2

3. 국가신기술 인증 신청=418,419,1

제4장 연구개발목표 달성도 및 대외기여도=419,420,1

제1절 연구개발 목표 및 달성도=419,420,1

1. 연구개발 목표 및 내용=419,420,2

2. 연구개발 목표대비 달성도=421,422,4

3. 연구개발 결과=425,426,6

제2절 연구개발로 인한 대외기여도=431,432,2

제5장 연구개발결과의 활용계획=433,434,2

제6장 참고문헌=435,436,8

List Of Tables

Table II-1-1. Characteristics Of Pollutant, Pollutant Loading Rate And Used Chemicals For Dyeing Processes(EPA, 1978)=59,60,1

Table II-1-2. Varieties Of Chromogen And Chromophore(김영규, 1999)=61,62,1

Table II-2-1. Cell Immobilization Processes=72,73,1

Table II-2-2. Comparison Of Internal Cell-Immobilization To Biofilm=75,76,1

Table II-4-1. Reaction Rate Constants Of Several Organic Compounds With OH Radical(강준원, 1993)=88,89,1

Table II-4-2. Oxidation Potential Of Oxidants(U.S. EPA, 1993)=91,92,1

Table II-4-3. Compounds To Be Oxidized By The Fenton Reaction=98,99,1

Table II-4-4. Compounds Not To Be Oxidized By The Fenton Reaction=98,99,1

Table II-4-5. Scheme Showing The Sequence Of Ozone Decomposition And OH Radical Formation By Ozone/High pH AOP=102,103,1

Table II-4-6. Scheme Showing The Sequence Of Ozone Decomposition And OH Radical Formation By PEROXONE AOP=103,104,1

Table III-1-1. LC/MSD Mass Data=125,126,1

Table III-1-2. Characteristic Of Media In Lab-Scale Packed Bed Reactor=129,130,1

Table III-1-3. Composition Of Biological Treatment Effluent=130,131,1

Table III-1-4. Concentration Of Agarose Gel Accoring To Molecular Weight=136,137,1

Table III-1-5. Reaction Process Of PCR=138,139,1

Table III-1-6. Complete 16S rDNA Universal Primer=139,140,1

Table III-1-7. Microbe Isolation/Identification Results In Sludge=141,142,1

Table III-1-8. Microbe Isolation/Identification Results In Pellets Immediately After Immobilization(0 Day)=144,145,1

Table III-1-9. Microbe Isolation/Identification Results In Pellets After 100 Days Of Reactor Operation=145,146,1

Table III-1-10. Microbe Isolation/Identification Results In Pellets After 150 Days Of Reactor Operation=146,147,1

Table III-1-11. Synthesis Of Immobilized Media With The Various PEG Prepolymer Ratios=150,151,2

Table III-1-12. Composition Ratio(좌 : Mmol, 우 : Molar Ratio)=154,155,2

Table III-1-13. Compressive Strength Of Immobilized Media For The Various Crosslinkers=162,163,1

Table III-1-14. Thermal Properties Of Immobilized Media With Various Crosslinkers=165,166,1

Table III-1-15. Composition Of The Synthetic Wastewater Used In Toxicity Test For Immobilized Cell=166,167,1

Table III-1-16. Removal Efficiency Of NH₄-N For 0.5% And 1.0% Nitrifying Bacteria Immobilized Media=167,168,1

Table III-1-17. Compressive Strength Of 0.5% And 1% Nitrifying Bacteria Immobilized Media According To Wastewater Treatment=182,183,1

Table III-1-18. Compressive Strength Of Immobilized Media In SBR According To Wastewater Treatment=186,187,1

Table III-1-19. Diffusion Coefficient Of Immobilized Media In SBR According To Wastewater Treatment=187,188,1

Table III-1-20. Compressive Strength Of Immobilized Media In PBR And FBR According To Wastewater Treatment=191,192,1

Table III-1-21. Diffusion Coefficient Of Immobilized Media In PBR And FBR According To Wastewater Treatment=192,193,1

Table III-1-22. Specific Properties Of Immobilized Media In The Presence Of Various Inorganic Compound=196,197,1

Table III-1-23. Time Conditions Of SBR Reactor=198,199,1

Table III-1-24. Seed And Influent Wastewater For Each Reactor=199,200,1

Table III-1-25. Mean Organic Concentration Of Influent And Effluent In Microbial Pool=201,202,1

Table III-1-26. Specific Removal Rate Of Hardly Biodegradable Organics At Each Condition=203,204,1

Table III-1-27. SCODcr Specific Removal Rate Between Adapted AS At Each Condition And Unadapted AS With The Lapse Of Time=207,208,1

Table III-1-28. Specific Removal Rate Of Organics In Each Phase=209,210,1

Table III-1-29. Operating Conditions Of PBR=217,218,1

Table III-1-30. Operating Conditions Of FBR=219,220,1

Table III-1-31. Characteristics Of The Textile Dyeing Wastewater Used In This Study=220,221,1

Table III-1-32. Comparison Of Average Performances At Different EBCTs In PBRs=223,224,1

Table III-1-33. Comparison Of Average Performances By Different HRT In FBRs=230,231,1

Table III-1-34. Operating Conditions Of A/S Process=232,233,1

Table III-1-35. Operating Conditions And Reactor Design Of Immobilized Media Process=234,235,1

Table III-1-36. Organics Concentration And Removal Efficiency Of Immobilized Media Process At Various EBCT=239,240,1

Table III-1-37. Cost Evaluation For Fenton Oxidation, Coagulation And Ozonation=262,263,1

Table III-1-38. Summary Of The Constants For Freundlich And Langmuir Isotherms=270,271,1

Table III-1-39. Operation Conditions Of Upflow Anaerobic Sludge Blanket=283,284,1

Table III-1-40. Color Removal By Upflow Anaerobic Sludge Blanket=285,286,1

Table III-1-41. Operation Conditions Of Aerobic Biofilm Reactor=292,293,1

Table III-1-42. Comparison Of Average Performances At Different EBCT By Aerobic Biofilm Reactor=300,301,1

Table III-2-1. Design Concentration Of Raw Wastewater And Effluent, And Wastewater Discharge Standards For Banwol Textile Dyeing Wastewater Treatment Plant=307,308,1

Table III-2-2. Dimensions Of The Main Facilities And Hydraulic Retention Time(HRT)=310,311,1

Table III-2-3. Characteristics Of Wastewater Streams For Banwol Textile Dyeing Wastewater Treatment Plant=311,312,1

Table III-2-4. Flow Rate And Water Quality Of Raw Wastewater For Banwol Textile Dyeing Wastewater Treatment Plant=313,314,1

Table III-2-5. Operation Status Of Pure Oxygen Aeration Tank=316,317,1

Table III-2-6. Changes Of Concentration For Each Treatment Process=319,320,1

Table III-2-7. Operating Conditions In Batch Test=324,325,1

Table III-2-8. Assesment Of Organic Removal In Field And Pilot Plant According To Media And Packing Ratio=336,337,1

Table III-2-9. Biomass In The Pilot Plant=343,344,1

Table III-2-10. Comparison Of Fenton Chemical Costs Between Pilot Plant And Field=344,345,1

Table III-2-11. Design Parameter=348,349,1

Table III-2-12. Annual Usage Of Fenton's Reagent For Banwol Textile Dyeing Wastewater Treatment Plant=348,349,1

Table III-2-13. Water Quality Of The Advanced Unit Process=350,351,1

Table III-2-14. Economical Analysis For Advanced Process=352,353,1

Table III-2-15. Cost Evaluation For Combined Process Of Ferrous Coagulation And Fenton Oxidation=389,390,1

Table III-2-16. Cost Evaluation For Combined Process Of Ferric Coagulation And Fenton Oxidation=389,390,1

Table III-2-17. Components Of Hisol=393,394,1

Table III-3-1. Effluent Concentration In Each Process=412,413,1

Table III-3-2. Discharge Standards Of Textile Dyeing Wastewater For Korea And Other Countries=414,415,1

Table IV-1-1. Goal And Scope Of Research By Years=420,421,1

Table IV-1-2. Achievement Of Goal Of Research=421,422,4

List Of Figures

Figure II-1-1. Chemical Usage And Wastes Production From General Dyeing Manufacturing Process(김탁현, 2002)=58,59,1

Figure II-2-1. Type Of Cell Immobilization=71,72,1

Figure II-3-1. P-Aminoazobenzene(pAAB) Dissolution By Bacillus Subtilis In Anaerobic Condition=79,80,1

Figure II-3-2. Proposed Mechanism For Reduction Of Azo Dyes By Whole Bacterial Cells(Modification Of Keck Et Al.)=80,81,1

Figure II-3-3. Proposed Mechanism For Reduction Of Pollutants In Abiotic Environment=81,82,1

Figure II-4-1. Classification Of AOPs By Methods For Generating Highly Reactive Radical Intermediates(Hager, 1991)=93,94,1

Figure II-4-2. Pathway Of Ozone Decomposition(강준원, 1999)=100,101,1

Figure II-4-3. Pathway Of Organic Matter Decomposition By Ozone Oxidation(강준원, 1999)=100,101,1

Figure II-4-4. Generation Mechanism Of Hydroxyl Radical For Ozone/UV AOP And PEROXONE AOP=105,106,1

Figure II-4-5. Plot Of Langmuir Isotherm Equation=108,109,1

Figure II-4-6. Plot Of Freundlich Isotherm Equation=109,110,1

Figure II-4-7. General Breakthrough Curve Of Adsorption=110,111,1

Figure III-1-1. Cumulative Concentration Histogram Of COD Fractions(<0.5K : MWCO Lower Than 500 Dalton)=115,116,1

Figure III-1-2. Fractional Size Distribution Of COD=116,117,1

Figure III-1-3. Cumulative Histogram Of Color Fractions=118,119,1

Figure III-1-4. Fractional Size Distribution Of Color=119,120,1

Figure III-1-5. UV-Vis Absorption Spectrum Of Raw Wastewater, A/S Effluent And Fenton Oxidation Effluent=121,122,1

Figure III-1-6. FTIR Spectrum Of Raw Wastewater(A), A/S Effluent (D) And Fenton Oxidation Effluent(E)=122,123,1

Figure III-1-7. LC/MS Chromatogram Of Raw Wastewater, A/S Effluent And Fenton Oxidation Effluent=124,125,1

Figure III-1-8. Photograph Of Plate Agar=131,132,1

Figure III-1-9. Photograph Of AP120 Kit=132,133,1

Figure III-1-10. Photograph Of Microscope=132,133,1

Figure III-1-11. V3 Changeable Region Of Ribosomal RNA Coding Gene=134,135,1

Figure III-1-12. Photograph Of UV Illuminator=136,137,1

Figure III-1-13. Schematic Diagram Of PCR Reaction Process=138,139,1

Figure III-1-14. Result Of PCR Electrophoresis For SM Attached Cell=140,141,1

Figure III-1-15. Result Of PCR Electrophoresis For Immobilized Cell=143,144,1

Figure III-1-16. Structure Of Crosslinker Used In Immobilized Media=152,153,1

Figure III-1-17. Synthetic Scheme Of Immobilized Media Including Sludge=157,158,1

Figure III-1-18. Dominant Mechanism(Main Reaction-Radical Polymerization)=158,159,1

Figure III-1-19. ATR Spectra Of Immobilized Media For The Various Crosslinkers=160,161,1

Figure III-1-20. SEM Image Of Immobilized Media With Various Crosslinkers=163,164,1

Figure III-1-21. DSC Thermogram Of Immobilized Media With Various Crosslinkers=164,165,1

Figure III-1-22. Diffusion Of Immobilized Media(In The Center, 2000㎛)=169,170,1

Figure III-1-23. Substrate Diffusion To The Inner Parts Of 0.5% Nitrifying Bacteria Immobilized Media=172,173,1

Figure III-1-24. Apparent Figures Of Prototype Media Synthesizer=174,175,1

Figure III-1-25. Synthetic Scheme For Prototype Media Synthesizer=176,177,1

Figure III-1-26. SEM Image Of 0.5% And 1% Nitrifying Bacteria Immobilized Media According To Wastewater Treatment=181,182,1

Figure III-1-27. Microbial Distribution Of 0.5% And 1% Nitrifying Bacteria Immobilized Media According To Wastewater Treatment=184,185,1

Figure III-1-28. SEM Image Of Immobilized Media In SBR According To Wastewater Treatment=185,186,1

Figure III-1-29. SEM Image Of Immobilized Media In PBR According To Wastewater Treatment=189,190,1

Figure III-1-30. SEM Image Of Immobilized Media In FBR According To Wastewater Treatment=190,191,1

Figure III-1-31. Microbial Distribution Of Immobilized Media In PBR According To Wastewater Treatment=194,195,1

Figure III-1-32. Microbial Distribution Of Immobilized Media In FBR According To Wastewater Treatment=194,195,1

Figure III-1-33. SCODcr Concentration Of Influent And Effluent In Microbial Pool=200,201,1

Figure III-1-34. Comparison Of Organic Matter Removal Ability Between Adapted AS And Unadapted AS At Each Condition=203,204,1

Figure III-1-35. Comparison Of SCODcr Removal Rate Between Adapted PO And Unadapted PO With The Lapse Of Time=205,206,1

Figure III-1-36. Comparison Of SCODcr Removal Rate Between Adapted AS At Each Condition And Unadapted AS With The Lapse Of Time=206,207,1

Figure III-1-37. SCODcr Removal With Time=208,209,1

Figure III-1-38. SCODcr Removal Rate By MLVSS=209,210,1

Figure III-1-39. SCODcr Specific Removal Rate Between Suspended Solid And Immobilized Cell(Media) With Adapted Activated Sludge=212,213,1

Figure III-1-40. SCODcr Removal With Time=213,214,1

Figure III-1-41. SCODcr Removal During A Cycle In SBRs=214,215,1

Figure III-1-42. SCODcr Concentration Profile By Packing Rate Of Immobilized Media=215,216,1

Figure III-1-43. Schematic Diagram & Photograph Of PBR=217,218,1

Figure III-1-44. Schematic Diagram Of FBR=219,220,1

Figure III-1-45. SCODcr Removal According To EBCT Variation In PBRs=222,223,1

Figure III-1-46. SCODcr Removal Rate vs. Influent Loading In PBRs=222,223,1

Figure III-1-47. SCODcr Removal At Different Position In PBRs=224,225,1

Figure III-1-48. SCODcr Removal With Height Under Various Do Concentrations In PBR=226,227,1

Figure III-1-49. SCODcr Removal According To HRT Variation In FBRs=227,228,1

Figure III-1-50. SCODcr Removal Rate vs. Influent Loading In FBRs=228,229,1

Figure III-1-51. CODMn Removal According To HRT Variation In FBRs=229,230,1

Figure III-1-52. Photograph Of Packed Bed Pilot Plant=231,232,1

Figure III-1-53. SCODcr Concentration Profiles At Various EBCT=235,236,1

Figure III-1-54. SCODcr Removal Rate At Various Influent Loading Rate=236,237,1

Figure III-1-55. TCODMn Concentration Profiles At Various EBCT=237,238,1

Figure III-1-56. TCODMn Removal Rate At Various Influent Loading Rate=238,239,1

Figure III-1-57. SCODMn Concentration Profiles At Various EBCT=238,239,1

Figure III-1-58. SS Concentration Profiles At Various EBCT=240,241,1

Figure III-1-59. SS And TCODMn Concentration Profiles Of Effluent For Backwashing Interval Decision=242,243,1

Figure III-1-60. Schematic Diagram Of Ozone Reactor Apparatus=248,249,1

Figure III-1-61. Effect Of Initial pH On Color Removal In Ozonation=250,251,1

Figure III-1-62. Effect Of Reaction Temperature On Color Removal In Ozonation=251,252,1

Figure III-1-63. COD(a) And Color(b) Profiles According To Reaction Time In Ozonation=252,253,1

Figure III-1-64. Effect Of SS On COD(A) And Color(B) Removal In Ozonation=254,255,1

Figure III-1-65. COD(a) And Color(b) Profiles In Combined Treatment Of FeCl₃ Coagulation/Precipitation And Ozonation=256,257,1

Figure III-1-66. COD(a) And Color(b) Profiles In Combined Treatment Of PAC Coagulation/Precipitation And Ozonation=258,259,1

Figure III-1-67. CODMn And Color Removal In Fenton Oxidation Treatment=260,261,1

Figure III-1-68. Schematic Diagram Of Treatment Process A, B And C=265,266,1

Figure III-1-69. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process A=267,268,1

Figure III-1-70. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process B=267,268,1

Figure III-1-71. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process C=268,269,1

Figure III-1-72. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process A=269,270,1

Figure III-1-73. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process B=269,270,1

Figure III-1-74. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process C=270,271,1

Figure III-1-75. Results Of CODMn And Color On Different Dosages Of GAC In Process A=272,273,1

Figure III-1-76. Results Of CODMn And Color On Different Dosages Of GAC In Process B=272,273,1

Figure III-1-77. Results Of Codr And Color On Different Dosages Of GAC In Process C=273,274,1

Figure III-1-78. Schematic Diagram Of Lab-Scale GAC Column System=274,275,1

Figure III-1-79. Breakthrough Curves Of CODMn And Color In Process A=276,277,1

Figure III-1-80. Breakthrough Curves Of CODMn And Color In Process B=276,277,1

Figure III-1-81. Breakthrough Curves Of CODMn And Color In Process C=277,278,1

Figure III-1-82. Schematic Diagram Of Anaerobic/Aerobic Reactors=281,282,1

Figure III-1-83. Anaerobic Sludge Granule(X100)=283,284,1

Figure III-1-84. Color Removal By Upflow Anaerobic Sludge Blanket=284,285,1

Figure III-1-85. SCODcr Removal By Upflow Anaerobic Sludge Blanket=286,287,1

Figure III-1-86. SCODMn Removal By Upflow Anaerobic Sludge Blanket=286,287,1

Figure III-1-87. SBOD5 Removal By Upflow Anaerobic Sludge Blanket=287,288,1

Figure III-1-88. Schematic Of The Upflow Anaerobic Sludge Blanket=288,289,1

Figure III-1-89. Color And ORP Values At Different Locations In Upflow Anaerobic Sludge Blanket=289,290,1

Figure III-1-90. SCODcr And pH Values At Different Locations In Upflow Anaerobic Sludge Blanket=290,291,1

Figure III-1-91. Cell Immobilized Media=292,293,1

Figure III-1-92. CODcr Removal By Aerobic Biofilm Reactor=294,295,1

Figure III-1-93. CODMn Removal By Aerobic Biofilm Reactor=295,296,1

Figure III-1-94. SBOD5 Removal By Aerobic Biofilm Reactor=295,296,1

Figure III-1-95. NBDSCODcr Concentrations In Anaerobic/Aerobic Reactors=297,298,1

Figure III-1-96. SS Removal By Aerobic Biofilm Reactor=298,299,1

Figure III-1-97. TCODMn Removal By Aerobic Biofilm Reactor=299,300,1

Figure III-1-98. CODMn vs. SS In The Effluent Of Aerobic Biofilm Reactor=299,300,1

Figure III-1-99. Color Removal By Anaerobic/Aerobic Reactors=301,302,1

Figure III-1-100. Color, SCODcr And SS Removal By Aerobic Biofilm Reactor=301,302,1

Figure III-1-101. Color And CODMn Values In Anaerobic/Aerobic Reactors=302,303,1

Figure III-1-102. SCODcr Removal At Different Height(Or Packing Rate) In Aerobic Biofilm Reactor=304,305,1

Figure III-1-103. SBOD5 Removal At Different Height(Or Packing Rate) In Aerobic Biofilm Reactor(EBCT 8hr)=305,306,1

Figure III-2-1. Schematic Of Treatment System And Flow Rate For Banwol Textile Dyeing Wastewater Treatment Plant=309,310,1

Figure III-2-2. SCODMn Concentration And Removal Efficiency For Unit Process=315,316,1

Figure III-2-3. Monthly SCODMn Concentration Profile For Unit Process=315,316,1

Figure III-2-4. Treatment Facilities Of Banwol Textile Dyeing Wastewater Treatment Plant And Sampling Points For The Process Analysis=317,318,1

Figure III-2-5. CODcr Concentration For Each Treatment Process By Process Analysis=318,319,1

Figure III-2-6. MLSS Concentration In Pure Oxygen Aeration Tank=321,322,1

Figure III-2-7. DO Concentration In Pure Oxygen Aeration Tank=321,322,1

Figure III-2-8. Schematic Diagram Of Batch Reactors For Various Packing Ratio Experiment=324,325,1

Figure III-2-9. SBOD5 Concentration Profiles At Various Packing Ratio Of Attached Media=325,326,1

Figure III-2-10. SCODcr Concentration Profiles At Various Packing Ratio Of Attached Media=327,328,1

Figure III-2-11. Schematic Diagram Of Pilot Plant=329,330,1

Figure III-2-12. SCODcr Concentration Profiles According To Media And Packing Ratio=331,332,1

Figure III-2-13. SCODMn Concentration Profiles According To Media And Packing Ratio=333,334,1

Figure III-2-14. SBOD5 Concentration Profiles According To Media And Packing Ratio=335,336,1

Figure III-2-15. SCODcr(a) And SBOD5(b) Variation According To Media In Each Basin=338,339,1

Figure III-2-16. Comparison Of SCODcr And SBOD5 Values Between Field And Pilot Plants With BioPOP=340,341,1

Figure III-2-17. Photos Of BioPOP Surface By SEM=342,343,1

Figure III-2-18. SCODMn Concentration And Removal Efficiency For Unit Process=350,351,1

Figure III-2-19. Concentration Profiles Of Fe2+ And H₂O₂ At Different Conditions=355,356,1

Figure III-2-20. Comparable Results Of Removal Of CODcr And Color By Various Dosages Of Fe2+ With Fixed H₂O₂ Concentration=356,357,1

Figure III-2-21. Time Table Of Fenton Oxidation Condtions=358,359,1

Figure III-2-22. Residual Concentration Of Ferrous Ion(Fe2+) And H₂O₂ For The Sequential Step Oxidation Of Fenton Reaction=360,361,1

Figure III-2-23. Concentration Profiles Of TCODcr And SCODcr Treated By Two Different Dosages Of H₂O₂ For The Sequential Step Oxidation=360,361,1

Figure III-2-24. Results Of CODcr And Color Of Raw Wastewater And Effluent Treated By Various Dosages Of H₂O₂ For The Sequential Step Oxidation=362,363,1

Figure III-2-25. Results Of CODcr And Color By The Different pH And Iron Species In Coagulation Process=364,365,1

Figure III-2-26. Variation Of Orp, Fe2+, Color, TCODcr And SCODcr In Successive Treatment Of Fe(III) Coagulation And Fenton Oxidation Process=367,368,1

Figure III-2-27. Results Of CODcr And Color For Two Different Treatment Processes=368,369,1

Figure III-2-28. Concentration Profiles Of CODcr Treated By Fenton Oxidation, Fe(II) Coagulation And Fe(III) Coagulation Throughout The 40 Minutes Of Reaction=370,371,1

Figure III-2-29. Comparable Results Of CODcr And Color Removal By Fenton Oxidation, Fe(II) Coagulation And Fe(III) Coagulation=370,371,1

Figure III-2-30. Schematic Diagram Of Fenton Oxidation Process With Injection Points Of Reagents And The Sampling Points For The Process Analysis In Banwol Textile Dyeing Wastewater Treatment Plant=374,375,1

Figure III-2-31. Concentration Profiles Of H₂O₂ And Fe2+ For The Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=376,377,1

Figure III-2-32. Concentration Profiles Of COD And Color For The Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=378,379,1

Figure III-2-33. Experimental Methods For Comparison Of Fenton Oxidation And Ferric Coagulation=380,381,1

Figure III-2-34. Concentration Profiles Of COD And Color For The Fenton Oxidation In The Batch Reactor=382,383,1

Figure III-2-35. Concentration Profiles Of COD And Color For The Ferric Coagulation In The Batch Reactor=383,384,1

Figure III-2-36. Results Of Supernatant Analysis For The Sequential Reactions Of Ferrous Coagulation, Fenton Oxidation With The Different Doses Of Ferrous Solution And H₂O₂, And Fenton Oxidation Alone=385,386,1

Figure III-2-37. Results Of Supernatant Analysis For The Sequential Reactions Of Ferric Coagulation, Fenton Oxidation With The Different Doses Of Ferrous Solution And H₂O₂, And Fenton Oxidation Alone=387,388,1

Figure III-2-38. Chemical Structure Of Reactive Black 5=391,392,1

Figure III-2-39. Concentration Profiles Of Reactive Black 5 At Different Fe(III) Catalyst Of Fenton-Like Reaction=392,393,1

Figure III-2-40. COD Removal Efficiency At Different Catalyst And Concentration Of Fe(III)=394,395,1

Figure III-2-41. UV Transmittance Profiles Of Raw Wastewater And Treated Wastewater At Different Fe(III) Catalyst=394,395,1

Figure III-2-42. COD Removal Efficiency At Different Concentration Of H₂O₂ And Fe(III) Catalyst=395,396,1

Figure III-2-43. COD Removal Efficiency At Different Dosing Ratio Of FeCl₂ : Hisol=396,397,1

Figure III-2-44. UV Transmittance Profiles At Different H₂O₂Dose=398,399,1

Figure III-2-45. Photooxidation Mechanism Of Organic Compound By TiO₂ Photocatalyst=400,401,1

Figure III-2-46. Schematic Diagram Of A Photoreactor With UV Lamps=400,401,1

Figure III-2-47. Degradation Of Acid Red 5 With Fenton Oxidation Process=401,402,1

Figure III-2-48. Effect Of UV Irradiation On Fenton Oxidation Process=403,404,1

Figure III-2-49. Effect Of UV Irradiation On Fenton-Like Oxidation Process=404,405,1

Figure III-2-50. Effect Of TiO₂ Concentration On Degradation Of Acid Red 5=405,406,1

Figure III-2-51. Effect Of Hisol On The Degradation Of Wastewater=406,407,1

Figure III-2-52. Effect Of Ti4+ On The Photodegradation Of Banwol Textile Dyeing Wastewater In A Reactor With Immersed UV Lamps=407,408,1

Figure III-2-53. Spectrum Variation Of Acid Blue-92 With A Photodegradation=408,409,1

Figure III-2-54. Spectrum Variation Of Banwol Textile Dyeing Wastewater With A Photodegradation=409,410,1

영문목차

[title page etc.]=0,1,14

Summary=14,15,2

Contents=16,17,31

Chapter I. Introduction=47,48,1

Section 1. Background And Needs Of Research=47,48,1

1. Needs Of Research=47,48,2

2. Trend Of Related Technologies=48,49,2

3. Difference With Existing Technologies=50,51,1

Sectin 2. Objectives And Scope Of Research=51,52,3

Chapter II. Current State Of Technology Development=54,55,1

Section 1. Characteristics Of Textile Dyeing Wastewater=54,55,1

1. Dyeing Process And Wastewater=54,55,6

2. Classification And Nature Of Dyestuff=60,61,4

3. Treatment Of Textile Dyeing Wastewater=64,65,4

4. Present State Of Domestic Textile Dyeing Wastewater Treatment=68,69,1

Section 2. Immobilization Methods Of Microorganism=69,70,1

1. Background And Necessity Of Cell Immobilization=69,70,2

2. Types And Principles Of Cell Immobilization=71,72,6

Section 3. Biological Treatment Of Textile Dyeing Wastewater And Biofilm Process=77,78,1

1. Biological Treatment Of Textile Dyeing Wastewater=77,78,1

a. Aerobic Processes=77,78,2

b. Anaerobic Processes=78,79,4

c. Anaerobic/Aerobic Processes=81,82,2

2. Biofilm Processes=83,84,1

a. Aerobic Biofilm Processes=83,84,3

b. Anaerobic Biofilm Processes=85,86,2

Section 4. Advanced Oxidation Processes And Activated Carbon Adsorption=87,88,1

1. Advanced Oxidation Processes=87,88,1

a. Definition Of Advanced Oxidation Processes=87,88,3

b. Importance Of OH Radical For Wastewater Treatment=90,91,2

c. Classification Of Advanced Oxidation Processes=92,93,2

2. Fenton Oxidation Process=94,95,1

a. Reaction Mechanism Of Fenton Oxidation=94,95,3

b. Organic Matter Treatment By Using Fenton Oxidation Process=97,98,2

3. Ozone Oxidation Process=99,100,1

a. Ozone Decomposition Mechanism In Ozone Oxidation=99,100,3

b. Ozone/High pH AOP=101,102,2

c. Ozone/H₂O₂ AOP(PEROXONE)=103,104,2

d. Ozone/UV AOP=104,105,2

4. Activated Carbon Adsorption=106,107,1

a. Adsorption Theory=106,107,1

b. Adsorption Equilibrium=107,108,3

c. Breakthrough Of Adsorption Column=109,110,2

Chapter III. Results=111,112,1

Section 1. Devlopment Of Effective Advanced Treatment Process For Recalcitrant Textile Dyeing Wastewater=111,112,1

1. Process Analysis For Banwol Textile Dyeing Wastewater Treatment Plant=111,112,2

a. Sampling And Analysis=112,113,2

b. Results And Discussion=113,114,14

c. Summary Of Research Results=126,127,2

2. Isolation Of Degraders=128,129,1

a. Sampling=129,130,2

b. Separation And Cultivation Of Microorganisms=130,131,2

c. Isolation Of Microorganisms=132,133,8

d. Results Of Isolation Of Microorganisms=140,141,7

e. Summary Of Research Results=147,148,1

3. Manufacturing Of Cell-Immobilized Media=148,149,1

a. Materials And Synthesis Of Immobilizing Polymer=148,149,25

b. Development And Utilization Of Media Synthesizer=173,174,4

c. Summary Of Research Results=177,178,2

4. Monitoring And Improvement Of Cell-Immobilized Media=179,180,1

a. Monitoring Of Nitrifying Bacteria Immobilized Media=179,180,6

b. Monitoring Of Immobilized Media In SBR=185,186,4

c. Monitoring Of Immobilized Media In PBR And FBR=188,189,7

d. Improvement Of Media(Specific Gravity)=195,196,2

e. Summary Of Research Results=197,198,1

5. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media=198,199,1

a. SBR Operation Using Suspended Growth Microorganisms=198,199,13

b. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(SBR)=211,212,5

c. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(Lab-Scale Reactor)=216,217,15

d. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(Pilot Plant)=231,232,12

e. Summary Of Research Results=243,244,4

6. Textile Dyeing Wastewater Treatment By Advanced Oxidation Processes=247,248,1

a. Ozone Oxidation Process=247,248,17

b. Activated Carbon Adsorption And Fenton Oxidation Process=264,265,14

c. Summary Of Research Results=278,279,2

7. Immobilized Media Process With Anaerobic Pre-Treatment=280,281,2

a. Color Removal From Textile Dyeing Wastewater By Anaerobic Reactor=281,282,10

b. Non-Biodegradable Organic Compounds Removal By Aerobic Reactor=291,292,15

c. Summary Of Research Results=305,306,2

Section 2. Improvement Of Banwol Textile Dyeing Wastewater Treatment Plant=307,308,1

1. Present States Of Banwol Textile Dyeing Wastewater Treatment Plant And Related Problems=307,308,1

a. Present State Of Wastewater Treatment Plant=307,308,5

b. Operating Conditions Of Wastewater Treatment Plant=312,313,5

c. Process Analysis Of Wastewater Treatment Plant=317,318,5

d. Summary Of Research Results=322,323,1

2. Improvement Plan For Biological Treatment Process=323,324,1

a. Organics Removal At Various Media Packing Ratio(Batch Test)=323,324,6

b. Organics Removal At Various Media Packing Ratio(Pilot Plant)=328,329,16

c. Cost Analysis=344,345,3

d. Summary Of Research Results=346,347,2

3. Improvement Plan For Banwol Textile Dyeing Wastewater Treatment Plant=348,349,1

a. Purpose Of Wastewater Treatment Plant Improvement=348,349,1

b. Estimated Water Quality After Process Improvement=349,350,2

c. Final Improvement Plan And Economical Effects=351,352,2

4. Basic Research For Optimization Of Fenton Oxidation Process=353,354,1

a. Optimization For Injection Condition Of Fenton's Reagent=353,354,10

b. Optimization For Combined Process With Iron Coagulation And Fenton Oxidation=363,364,9

c. Summary Of Research Results=372,373,1

5. Optimization Of Fenton Oxidation Process=373,374,1

a. Present State Of Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=373,374,2

b. Process Analysis Of Fenton Oxidation Treatment=375,376,5

c. Comparison Of Fenton Oxidation And Ferric Coagulation=380,381,4

d. Combined Process With Iron Coagulation And Fenton Oxidation=384,385,6

e. Summary Of Research Results=390,391,1

6. Optimization Of Fenton-Like Process Using Fe(III)=391,392,1

a. Dye Removal Efficiency By Using Various Fe(III) At Fenton-Like Process=391,392,2

b. Textile Dyeing Wastewater Treatment By Fenton-Like Reaction=393,394,6

c. Summary Of Research Results=398,399,1

7. Influence Of Dissolved TiO₂ In Wastewater Treatment=399,400,1

a. Introduction Of TiO₂/UV System=399,400,2

b. Fe2+ And Fe3+ As Fenton Oxidation Reagent=401,402,2

c. Effects Of UV In Fenton Oxidation Process=402,403,2

d. Effects Of UV In Fenton-Like Oxidation Process=403,404,2

e. Effects Of TiO₂ Concentration=404,405,2

f. Effects Of Hisol In Degradation Of Textile Dyeing Wastewater=405,406,2

g. Effects Of Dissolved Ti4+ In Photodegradation=406,407,2

h. Dye Variation According To TiO₂ Photodegradation=408,409,2

i. Summary Of Research Results=410,411,1

Section 3. Application And Technology Marketing=411,412,1

1. Combination Of Unit Processes To Meet Various Discharge Standards=411,412,5

2. Application To Other Wastewaters=416,417,2

3. Application For National New Technology=418,419,1

Chapter IV. Degree Of Achievement Of Goals And Contribution To Related Research=419,420,1

Section 1. Research Goals=419,420,1

1. Research Goals=419,420,2

2. Degree Of Achievement Of Research Goals=421,422,4

3. Results Of Research=425,426,6

Section 2. Contribution To Related Research=431,432,2

Chapter V. Application Plans Of The Research Results=433,434,2

Chapter VI. References=435,436,8

칼라목차

jpg

Figure III-2-40. COD Removal Efficiency At Different Catalyst And Concentration Of Fe(III)=394,395,1

Figure III-2-41. UV Transmittance Profiles Of Raw Wastewater And Treated Wastewater At Different Fe(III) Catalyst=394,395,1

Figure III-2-42. COD Removal Efficiency At Different Concentration Of H₂O₂ And Fe(III) Catalyst=395,396,1

Figure III-2-43. COD Removal Efficiency At Different Dosing Ratio Of FeCl₂ : Hisol=396,397,1