권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
목차
[표제지]=0,1,1
제출문=1,2,1
요약문=2,3,12
Summary=14,15,2
Contents=16,17,7
목차=23,24,6
List of Figures=29,30,13
List of Tables=42,43,5
제1장 서론=47,48,1
제1절 연구 배경 및 필요성=47,48,1
1. 연구개발의 목적 및 필요성=47,48,2
2. 국내ㆍ외 관련기술의 현황=48,49,2
3. 국내ㆍ외 유사기술과의 차별성=50,51,1
제2절 연구목표 및 범위=51,52,3
제2장 국내ㆍ외 기술개발 현황=54,55,1
제1절 염색폐수의 특성=54,55,1
1. 염색공정 및 염색폐수의 특성=54,55,6
2. 염료의 종류 및 특성=60,61,4
3. 염색폐수의 처리 방법=64,65,4
4. 국내의 염색폐수 처리공정=68,69,1
제2절 미생물 고정화법=69,70,1
1. 미생물 고정화법의 연구배경 및 필요성=69,70,2
2. 미생물 고정화법의 종류 및 원리=71,72,6
제3절 염색폐수의 생물학적 처리 및 생물막 공정=77,78,1
1. 염색폐수의 생물학적 처리=77,78,1
가. 호기성 처리법=77,78,2
나. 혐기성 처리법=78,79,4
다. 혐기/호기 처리법=81,82,2
2. 생물막 공정=83,84,1
가. 호기성 생물막 공정=83,84,3
나. 혐기성 생물막 공정=85,86,2
제4절 고급산화공정 및 활성탄 흡착=87,88,1
1. 고급산화공정=87,88,1
가. 고급산화공정의 정의=87,88,3
나. 폐수처리에서의 OH radical의 중요성=90,91,2
다. 고급산화공정의 분류=92,93,2
2. 펜톤산화 공정=94,95,1
가. 펜톤산화의 반응 메카니즘=94,95,3
나. 펜톤산화 공정을 이용한 유기물의 산화 처리=97,98,2
3. 오존산화 공정=99,100,1
가. 오존의 분해 메카니즘=99,100,3
나. Ozone/High pH AOP=101,102,2
다. Ozone/H₂O₂ AOP(PEROXONE)=103,104,2
라. Ozone/UV AOP=104,105,2
4. 활성탄 흡착=106,107,1
가. 흡착 이론=106,107,1
나. 흡착평형식=107,108,3
다. 흡착탑의 파과=109,110,2
제3장 연구개발수행 내용 및 결과=111,112,1
제1절 난분해성 염색폐수의 효율적 고도처리 공정개발=111,112,1
1. 염색폐수의 공정별 성상분석=111,112,2
가. 시료의 채취 및 분석방법=112,113,2
나. 결과 및 고찰=113,114,14
다. 연구결과 요약=126,127,2
2. 난분해성 염색폐수의 분해균주 개발=128,129,1
가. 시료의 채취=129,130,2
나. 균주 분리 및 배양=130,131,2
다. 균주 동정=132,133,8
라. 미생물 분리동정 결과=140,141,7
마. 연구결과 요약=147,148,1
3. 고정화담체의 소재 개발 및 제조 기술=148,149,1
가. 담체의 소재 개발 및 합성=148,149,25
나. 담체합성기의 제작 및 적용=173,174,4
다. 연구결과 요약=177,178,2
4. 고정화담체의 모니터링 및 개선 방안=179,180,1
가. 질산화 담체의 모니터링=179,180,6
나. SBR 반응기에 적용된 고정화담체의 모니터링=185,186,4
다. 고정상 반응기와 유동상 반응기에 적용된 고정화담체의 모니터링=188,189,7
라. 고정화담체의 개선방안(비중 향상)=195,196,2
마. 연구결과 요약=197,198,1
5. 고정화담체 공정을 이용한 염색폐수의 처리=198,199,1
가. 부유성장 미생물을 이용한 SBR 운전=198,199,13
나. 고정화담체 공정을 이용한 염색폐수의 처리(SBR 운전)=211,212,5
다. 고정화담체 공정을 이용한 염색폐수의 처리(Lab-Scale 반응기)=216,217,15
라. 고정화담체 공정을 이용한 염색폐수의 처리(Pilot Plant)=231,232,12
마. 연구결과 요약=243,244,4
6. 고급산화공정을 이용한 염색폐수의 처리=247,248,1
가. 오존산화 공정=247,248,17
나. 활성탄 흡착 및 펜톤산화 공정=264,265,14
다. 연구결과 요약=278,279,2
7. 혐기 전처리를 이용한 고정화담체 공정개발=280,281,2
가. 혐기성 반응기를 이용한 염색폐수의 색도 처리=281,282,10
나. 호기성 반응기를 이용한 염색폐수의 난분해성 물질 처리=291,292,15
다. 연구결과 요약=305,306,2
제2절 기존 염색폐수처리장의 개선에 직합한 공정개발=307,308,1
1. 기존 염색폐수처리장의 현황과 문제점=307,308,1
가. 폐수처리장 현황=307,308,5
나. 폐수처리장 운전 현황=312,313,5
다. 폐수처리장 공정 분석=317,318,5
라. 연구결과 요약=322,323,1
2. 생물학적 처리공정의 개선 방안=323,324,1
가. 담체 충진율에 따른 유기물 제거 회분식 실험=323,324,6
나. 담체 충진율에 따른 유기물 제거 Pilot Plant 실험=328,329,16
다. Pilot Plant와 순산소포기조 유출수의 펜톤산화 처리비용 비교=344,345,3
라. 연구결과 요약=346,347,2
3. 반월염색조합 공동폐수처리장의 공정 개선안=348,349,1
가. 폐수처리장 개선목적=348,349,1
나. 단위공정별 평균제거율을 고려한 공정개선 후 예측수질=349,350,2
다. 최종 개선안 및 경제성 분석=351,352,2
4. 펜톤산화 운전인자 최적화를 위한 기초 연구=353,354,1
가. 펜톤시약의 주입량 절감을 위한 최적 주입 조건 도출=353,354,10
나. 응집 및 펜톤산화에 의한 최적 처리방안 도출=363,364,9
다. 연구결과 요약=372,373,1
5. 펜톤산화 공정의 최적화 연구=373,374,1
가. 반월염색폐수처리장의 펜톤산화 처리 현황=373,374,2
나. 펜톤산화조 공정 분석=375,376,5
다. 펜톤산화 및 Ferric Coagulation의 비교 실험=380,381,4
라. 철 응집과 펜톤산화의 연계처리=384,385,6
마. 연구결과 요약=390,391,1
6. 3가철을 이용한 유사펜톤 공정 연구=391,392,1
가. 유사펜톤 반응에서 Fe(III)의 종류에 따른 염료 제거효율 비교=391,392,2
나. 유사펜톤 반응을 이용한 실제염색폐수의 처리=393,394,6
다. 연구결과 요약=398,399,1
7. 폐수내 용존 TiO₂의 영향 연구=399,400,1
가. TiO₂/UV 시스템의 개요=399,400,2
나. 펜톤산화 공정에서 Fe2+와 Fe3+의 염료 분해효과 비교(이미지참조)=401,402,2
다. UV광이 펜톤산화 공정에 미치는 영향=402,403,2
라. UV광이 유사펜톤 공정에 미치는 영향=403,404,2
마. TiO₂ 농도의 영향=404,405,2
바. 실폐수의 분해에 대한 Hisol의 효과=405,406,2
사. 용존 Ti4+이 염색폐수의 광분해에 미치는 영향(이미지참조)=406,407,2
아. TiO₂의 광분해에 따른 염료의 성상 변화=408,409,2
자. 연구결과 요약=410,411,1
제3절 요소기술의 상품화 및 활용방안 연구=411,412,1
1. 국가별 배출허용기준 수준에 적합한 공정개발 연구=411,412,5
2. 개발된 고정화담체 공정의 타 폐수에 대한 활용가능성 평가=416,417,2
3. 국가신기술 인증 신청=418,419,1
제4장 연구개발목표 달성도 및 대외기여도=419,420,1
제1절 연구개발 목표 및 달성도=419,420,1
1. 연구개발 목표 및 내용=419,420,2
2. 연구개발 목표대비 달성도=421,422,4
3. 연구개발 결과=425,426,6
제2절 연구개발로 인한 대외기여도=431,432,2
제5장 연구개발결과의 활용계획=433,434,2
제6장 참고문헌=435,436,8
Figure II-1-1. Chemical Usage And Wastes Production From General Dyeing Manufacturing Process(김탁현, 2002)=58,59,1
Figure II-2-1. Type Of Cell Immobilization=71,72,1
Figure II-3-1. P-Aminoazobenzene(pAAB) Dissolution By Bacillus Subtilis In Anaerobic Condition=79,80,1
Figure II-3-2. Proposed Mechanism For Reduction Of Azo Dyes By Whole Bacterial Cells(Modification Of Keck Et Al.)=80,81,1
Figure II-3-3. Proposed Mechanism For Reduction Of Pollutants In Abiotic Environment=81,82,1
Figure II-4-1. Classification Of AOPs By Methods For Generating Highly Reactive Radical Intermediates(Hager, 1991)=93,94,1
Figure II-4-2. Pathway Of Ozone Decomposition(강준원, 1999)=100,101,1
Figure II-4-3. Pathway Of Organic Matter Decomposition By Ozone Oxidation(강준원, 1999)=100,101,1
Figure II-4-4. Generation Mechanism Of Hydroxyl Radical For Ozone/UV AOP And PEROXONE AOP=105,106,1
Figure II-4-5. Plot Of Langmuir Isotherm Equation=108,109,1
Figure II-4-6. Plot Of Freundlich Isotherm Equation=109,110,1
Figure II-4-7. General Breakthrough Curve Of Adsorption=110,111,1
Figure III-1-1. Cumulative Concentration Histogram Of COD Fractions(<0.5K : MWCO Lower Than 500 Dalton)=115,116,1
Figure III-1-2. Fractional Size Distribution Of COD=116,117,1
Figure III-1-3. Cumulative Histogram Of Color Fractions=118,119,1
Figure III-1-4. Fractional Size Distribution Of Color=119,120,1
Figure III-1-5. UV-Vis Absorption Spectrum Of Raw Wastewater, A/S Effluent And Fenton Oxidation Effluent=121,122,1
Figure III-1-6. FTIR Spectrum Of Raw Wastewater(A), A/S Effluent (D) And Fenton Oxidation Effluent(E)=122,123,1
Figure III-1-7. LC/MS Chromatogram Of Raw Wastewater, A/S Effluent And Fenton Oxidation Effluent=124,125,1
Figure III-1-8. Photograph Of Plate Agar=131,132,1
Figure III-1-9. Photograph Of AP120 Kit=132,133,1
Figure III-1-10. Photograph Of Microscope=132,133,1
Figure III-1-11. V3 Changeable Region Of Ribosomal RNA Coding Gene=134,135,1
Figure III-1-12. Photograph Of UV Illuminator=136,137,1
Figure III-1-13. Schematic Diagram Of PCR Reaction Process=138,139,1
Figure III-1-14. Result Of PCR Electrophoresis For SM Attached Cell=140,141,1
Figure III-1-15. Result Of PCR Electrophoresis For Immobilized Cell=143,144,1
Figure III-1-16. Structure Of Crosslinker Used In Immobilized Media=152,153,1
Figure III-1-17. Synthetic Scheme Of Immobilized Media Including Sludge=157,158,1
Figure III-1-18. Dominant Mechanism(Main Reaction-Radical Polymerization)=158,159,1
Figure III-1-19. ATR Spectra Of Immobilized Media For The Various Crosslinkers=160,161,1
Figure III-1-20. SEM Image Of Immobilized Media With Various Crosslinkers=163,164,1
Figure III-1-21. DSC Thermogram Of Immobilized Media With Various Crosslinkers=164,165,1
Figure III-1-22. Diffusion Of Immobilized Media(In The Center, 2000㎛)=169,170,1
Figure III-1-23. Substrate Diffusion To The Inner Parts Of 0.5% Nitrifying Bacteria Immobilized Media=172,173,1
Figure III-1-24. Apparent Figures Of Prototype Media Synthesizer=174,175,1
Figure III-1-25. Synthetic Scheme For Prototype Media Synthesizer=176,177,1
Figure III-1-26. SEM Image Of 0.5% And 1% Nitrifying Bacteria Immobilized Media According To Wastewater Treatment=181,182,1
Figure III-1-27. Microbial Distribution Of 0.5% And 1% Nitrifying Bacteria Immobilized Media According To Wastewater Treatment=184,185,1
Figure III-1-28. SEM Image Of Immobilized Media In SBR According To Wastewater Treatment=185,186,1
Figure III-1-29. SEM Image Of Immobilized Media In PBR According To Wastewater Treatment=189,190,1
Figure III-1-30. SEM Image Of Immobilized Media In FBR According To Wastewater Treatment=190,191,1
Figure III-1-31. Microbial Distribution Of Immobilized Media In PBR According To Wastewater Treatment=194,195,1
Figure III-1-32. Microbial Distribution Of Immobilized Media In FBR According To Wastewater Treatment=194,195,1
Figure III-1-33. SCODcr Concentration Of Influent And Effluent In Microbial Pool=200,201,1
Figure III-1-34. Comparison Of Organic Matter Removal Ability Between Adapted AS And Unadapted AS At Each Condition=203,204,1
Figure III-1-35. Comparison Of SCODcr Removal Rate Between Adapted PO And Unadapted PO With The Lapse Of Time=205,206,1
Figure III-1-36. Comparison Of SCODcr Removal Rate Between Adapted AS At Each Condition And Unadapted AS With The Lapse Of Time=206,207,1
Figure III-1-37. SCODcr Removal With Time=208,209,1
Figure III-1-38. SCODcr Removal Rate By MLVSS=209,210,1
Figure III-1-39. SCODcr Specific Removal Rate Between Suspended Solid And Immobilized Cell(Media) With Adapted Activated Sludge=212,213,1
Figure III-1-40. SCODcr Removal With Time=213,214,1
Figure III-1-41. SCODcr Removal During A Cycle In SBRs=214,215,1
Figure III-1-42. SCODcr Concentration Profile By Packing Rate Of Immobilized Media=215,216,1
Figure III-1-43. Schematic Diagram & Photograph Of PBR=217,218,1
Figure III-1-44. Schematic Diagram Of FBR=219,220,1
Figure III-1-45. SCODcr Removal According To EBCT Variation In PBRs=222,223,1
Figure III-1-46. SCODcr Removal Rate vs. Influent Loading In PBRs=222,223,1
Figure III-1-47. SCODcr Removal At Different Position In PBRs=224,225,1
Figure III-1-48. SCODcr Removal With Height Under Various Do Concentrations In PBR=226,227,1
Figure III-1-49. SCODcr Removal According To HRT Variation In FBRs=227,228,1
Figure III-1-50. SCODcr Removal Rate vs. Influent Loading In FBRs=228,229,1
Figure III-1-51. CODMn Removal According To HRT Variation In FBRs=229,230,1
Figure III-1-52. Photograph Of Packed Bed Pilot Plant=231,232,1
Figure III-1-53. SCODcr Concentration Profiles At Various EBCT=235,236,1
Figure III-1-54. SCODcr Removal Rate At Various Influent Loading Rate=236,237,1
Figure III-1-55. TCODMn Concentration Profiles At Various EBCT=237,238,1
Figure III-1-56. TCODMn Removal Rate At Various Influent Loading Rate=238,239,1
Figure III-1-57. SCODMn Concentration Profiles At Various EBCT=238,239,1
Figure III-1-58. SS Concentration Profiles At Various EBCT=240,241,1
Figure III-1-59. SS And TCODMn Concentration Profiles Of Effluent For Backwashing Interval Decision=242,243,1
Figure III-1-60. Schematic Diagram Of Ozone Reactor Apparatus=248,249,1
Figure III-1-61. Effect Of Initial pH On Color Removal In Ozonation=250,251,1
Figure III-1-62. Effect Of Reaction Temperature On Color Removal In Ozonation=251,252,1
Figure III-1-63. COD(a) And Color(b) Profiles According To Reaction Time In Ozonation=252,253,1
Figure III-1-64. Effect Of SS On COD(A) And Color(B) Removal In Ozonation=254,255,1
Figure III-1-65. COD(a) And Color(b) Profiles In Combined Treatment Of FeCl₃ Coagulation/Precipitation And Ozonation=256,257,1
Figure III-1-66. COD(a) And Color(b) Profiles In Combined Treatment Of PAC Coagulation/Precipitation And Ozonation=258,259,1
Figure III-1-67. CODMn And Color Removal In Fenton Oxidation Treatment=260,261,1
Figure III-1-68. Schematic Diagram Of Treatment Process A, B And C=265,266,1
Figure III-1-69. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process A=267,268,1
Figure III-1-70. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process B=267,268,1
Figure III-1-71. Profiles Of CODMn And Color With Time For Two Different Temperatures In Process C=268,269,1
Figure III-1-72. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process A=269,270,1
Figure III-1-73. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process B=269,270,1
Figure III-1-74. Isotherm Plots Of Freundlich(a) And Langmuir(b) For CODMn In Process C=270,271,1
Figure III-1-75. Results Of CODMn And Color On Different Dosages Of GAC In Process A=272,273,1
Figure III-1-76. Results Of CODMn And Color On Different Dosages Of GAC In Process B=272,273,1
Figure III-1-77. Results Of Codr And Color On Different Dosages Of GAC In Process C=273,274,1
Figure III-1-78. Schematic Diagram Of Lab-Scale GAC Column System=274,275,1
Figure III-1-79. Breakthrough Curves Of CODMn And Color In Process A=276,277,1
Figure III-1-80. Breakthrough Curves Of CODMn And Color In Process B=276,277,1
Figure III-1-81. Breakthrough Curves Of CODMn And Color In Process C=277,278,1
Figure III-1-82. Schematic Diagram Of Anaerobic/Aerobic Reactors=281,282,1
Figure III-1-83. Anaerobic Sludge Granule(X100)=283,284,1
Figure III-1-84. Color Removal By Upflow Anaerobic Sludge Blanket=284,285,1
Figure III-1-85. SCODcr Removal By Upflow Anaerobic Sludge Blanket=286,287,1
Figure III-1-86. SCODMn Removal By Upflow Anaerobic Sludge Blanket=286,287,1
Figure III-1-87. SBOD5 Removal By Upflow Anaerobic Sludge Blanket=287,288,1
Figure III-1-88. Schematic Of The Upflow Anaerobic Sludge Blanket=288,289,1
Figure III-1-89. Color And ORP Values At Different Locations In Upflow Anaerobic Sludge Blanket=289,290,1
Figure III-1-90. SCODcr And pH Values At Different Locations In Upflow Anaerobic Sludge Blanket=290,291,1
Figure III-1-91. Cell Immobilized Media=292,293,1
Figure III-1-92. CODcr Removal By Aerobic Biofilm Reactor=294,295,1
Figure III-1-93. CODMn Removal By Aerobic Biofilm Reactor=295,296,1
Figure III-1-94. SBOD5 Removal By Aerobic Biofilm Reactor=295,296,1
Figure III-1-95. NBDSCODcr Concentrations In Anaerobic/Aerobic Reactors=297,298,1
Figure III-1-96. SS Removal By Aerobic Biofilm Reactor=298,299,1
Figure III-1-97. TCODMn Removal By Aerobic Biofilm Reactor=299,300,1
Figure III-1-98. CODMn vs. SS In The Effluent Of Aerobic Biofilm Reactor=299,300,1
Figure III-1-99. Color Removal By Anaerobic/Aerobic Reactors=301,302,1
Figure III-1-100. Color, SCODcr And SS Removal By Aerobic Biofilm Reactor=301,302,1
Figure III-1-101. Color And CODMn Values In Anaerobic/Aerobic Reactors=302,303,1
Figure III-1-102. SCODcr Removal At Different Height(Or Packing Rate) In Aerobic Biofilm Reactor=304,305,1
Figure III-1-103. SBOD5 Removal At Different Height(Or Packing Rate) In Aerobic Biofilm Reactor(EBCT 8hr)=305,306,1
Figure III-2-1. Schematic Of Treatment System And Flow Rate For Banwol Textile Dyeing Wastewater Treatment Plant=309,310,1
Figure III-2-2. SCODMn Concentration And Removal Efficiency For Unit Process=315,316,1
Figure III-2-3. Monthly SCODMn Concentration Profile For Unit Process=315,316,1
Figure III-2-4. Treatment Facilities Of Banwol Textile Dyeing Wastewater Treatment Plant And Sampling Points For The Process Analysis=317,318,1
Figure III-2-5. CODcr Concentration For Each Treatment Process By Process Analysis=318,319,1
Figure III-2-6. MLSS Concentration In Pure Oxygen Aeration Tank=321,322,1
Figure III-2-7. DO Concentration In Pure Oxygen Aeration Tank=321,322,1
Figure III-2-8. Schematic Diagram Of Batch Reactors For Various Packing Ratio Experiment=324,325,1
Figure III-2-9. SBOD5 Concentration Profiles At Various Packing Ratio Of Attached Media=325,326,1
Figure III-2-10. SCODcr Concentration Profiles At Various Packing Ratio Of Attached Media=327,328,1
Figure III-2-11. Schematic Diagram Of Pilot Plant=329,330,1
Figure III-2-12. SCODcr Concentration Profiles According To Media And Packing Ratio=331,332,1
Figure III-2-13. SCODMn Concentration Profiles According To Media And Packing Ratio=333,334,1
Figure III-2-14. SBOD5 Concentration Profiles According To Media And Packing Ratio=335,336,1
Figure III-2-15. SCODcr(a) And SBOD5(b) Variation According To Media In Each Basin=338,339,1
Figure III-2-16. Comparison Of SCODcr And SBOD5 Values Between Field And Pilot Plants With BioPOP=340,341,1
Figure III-2-17. Photos Of BioPOP Surface By SEM=342,343,1
Figure III-2-18. SCODMn Concentration And Removal Efficiency For Unit Process=350,351,1
Figure III-2-19. Concentration Profiles Of Fe2+ And H₂O₂ At Different Conditions=355,356,1
Figure III-2-20. Comparable Results Of Removal Of CODcr And Color By Various Dosages Of Fe2+ With Fixed H₂O₂ Concentration=356,357,1
Figure III-2-21. Time Table Of Fenton Oxidation Condtions=358,359,1
Figure III-2-22. Residual Concentration Of Ferrous Ion(Fe2+) And H₂O₂ For The Sequential Step Oxidation Of Fenton Reaction=360,361,1
Figure III-2-23. Concentration Profiles Of TCODcr And SCODcr Treated By Two Different Dosages Of H₂O₂ For The Sequential Step Oxidation=360,361,1
Figure III-2-24. Results Of CODcr And Color Of Raw Wastewater And Effluent Treated By Various Dosages Of H₂O₂ For The Sequential Step Oxidation=362,363,1
Figure III-2-25. Results Of CODcr And Color By The Different pH And Iron Species In Coagulation Process=364,365,1
Figure III-2-26. Variation Of Orp, Fe2+, Color, TCODcr And SCODcr In Successive Treatment Of Fe(III) Coagulation And Fenton Oxidation Process=367,368,1
Figure III-2-27. Results Of CODcr And Color For Two Different Treatment Processes=368,369,1
Figure III-2-28. Concentration Profiles Of CODcr Treated By Fenton Oxidation, Fe(II) Coagulation And Fe(III) Coagulation Throughout The 40 Minutes Of Reaction=370,371,1
Figure III-2-29. Comparable Results Of CODcr And Color Removal By Fenton Oxidation, Fe(II) Coagulation And Fe(III) Coagulation=370,371,1
Figure III-2-30. Schematic Diagram Of Fenton Oxidation Process With Injection Points Of Reagents And The Sampling Points For The Process Analysis In Banwol Textile Dyeing Wastewater Treatment Plant=374,375,1
Figure III-2-31. Concentration Profiles Of H₂O₂ And Fe2+ For The Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=376,377,1
Figure III-2-32. Concentration Profiles Of COD And Color For The Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=378,379,1
Figure III-2-33. Experimental Methods For Comparison Of Fenton Oxidation And Ferric Coagulation=380,381,1
Figure III-2-34. Concentration Profiles Of COD And Color For The Fenton Oxidation In The Batch Reactor=382,383,1
Figure III-2-35. Concentration Profiles Of COD And Color For The Ferric Coagulation In The Batch Reactor=383,384,1
Figure III-2-36. Results Of Supernatant Analysis For The Sequential Reactions Of Ferrous Coagulation, Fenton Oxidation With The Different Doses Of Ferrous Solution And H₂O₂, And Fenton Oxidation Alone=385,386,1
Figure III-2-37. Results Of Supernatant Analysis For The Sequential Reactions Of Ferric Coagulation, Fenton Oxidation With The Different Doses Of Ferrous Solution And H₂O₂, And Fenton Oxidation Alone=387,388,1
Figure III-2-38. Chemical Structure Of Reactive Black 5=391,392,1
Figure III-2-39. Concentration Profiles Of Reactive Black 5 At Different Fe(III) Catalyst Of Fenton-Like Reaction=392,393,1
Figure III-2-40. COD Removal Efficiency At Different Catalyst And Concentration Of Fe(III)=394,395,1
Figure III-2-41. UV Transmittance Profiles Of Raw Wastewater And Treated Wastewater At Different Fe(III) Catalyst=394,395,1
Figure III-2-42. COD Removal Efficiency At Different Concentration Of H₂O₂ And Fe(III) Catalyst=395,396,1
Figure III-2-43. COD Removal Efficiency At Different Dosing Ratio Of FeCl₂ : Hisol=396,397,1
Figure III-2-44. UV Transmittance Profiles At Different H₂O₂Dose=398,399,1
Figure III-2-45. Photooxidation Mechanism Of Organic Compound By TiO₂ Photocatalyst=400,401,1
Figure III-2-46. Schematic Diagram Of A Photoreactor With UV Lamps=400,401,1
Figure III-2-47. Degradation Of Acid Red 5 With Fenton Oxidation Process=401,402,1
Figure III-2-48. Effect Of UV Irradiation On Fenton Oxidation Process=403,404,1
Figure III-2-49. Effect Of UV Irradiation On Fenton-Like Oxidation Process=404,405,1
Figure III-2-50. Effect Of TiO₂ Concentration On Degradation Of Acid Red 5=405,406,1
Figure III-2-51. Effect Of Hisol On The Degradation Of Wastewater=406,407,1
Figure III-2-52. Effect Of Ti4+ On The Photodegradation Of Banwol Textile Dyeing Wastewater In A Reactor With Immersed UV Lamps=407,408,1
Figure III-2-53. Spectrum Variation Of Acid Blue-92 With A Photodegradation=408,409,1
Figure III-2-54. Spectrum Variation Of Banwol Textile Dyeing Wastewater With A Photodegradation=409,410,1
영문목차
[title page etc.]=0,1,14
Summary=14,15,2
Contents=16,17,31
Chapter I. Introduction=47,48,1
Section 1. Background And Needs Of Research=47,48,1
1. Needs Of Research=47,48,2
2. Trend Of Related Technologies=48,49,2
3. Difference With Existing Technologies=50,51,1
Sectin 2. Objectives And Scope Of Research=51,52,3
Chapter II. Current State Of Technology Development=54,55,1
Section 1. Characteristics Of Textile Dyeing Wastewater=54,55,1
1. Dyeing Process And Wastewater=54,55,6
2. Classification And Nature Of Dyestuff=60,61,4
3. Treatment Of Textile Dyeing Wastewater=64,65,4
4. Present State Of Domestic Textile Dyeing Wastewater Treatment=68,69,1
Section 2. Immobilization Methods Of Microorganism=69,70,1
1. Background And Necessity Of Cell Immobilization=69,70,2
2. Types And Principles Of Cell Immobilization=71,72,6
Section 3. Biological Treatment Of Textile Dyeing Wastewater And Biofilm Process=77,78,1
1. Biological Treatment Of Textile Dyeing Wastewater=77,78,1
a. Aerobic Processes=77,78,2
b. Anaerobic Processes=78,79,4
c. Anaerobic/Aerobic Processes=81,82,2
2. Biofilm Processes=83,84,1
a. Aerobic Biofilm Processes=83,84,3
b. Anaerobic Biofilm Processes=85,86,2
Section 4. Advanced Oxidation Processes And Activated Carbon Adsorption=87,88,1
1. Advanced Oxidation Processes=87,88,1
a. Definition Of Advanced Oxidation Processes=87,88,3
b. Importance Of OH Radical For Wastewater Treatment=90,91,2
c. Classification Of Advanced Oxidation Processes=92,93,2
2. Fenton Oxidation Process=94,95,1
a. Reaction Mechanism Of Fenton Oxidation=94,95,3
b. Organic Matter Treatment By Using Fenton Oxidation Process=97,98,2
3. Ozone Oxidation Process=99,100,1
a. Ozone Decomposition Mechanism In Ozone Oxidation=99,100,3
b. Ozone/High pH AOP=101,102,2
c. Ozone/H₂O₂ AOP(PEROXONE)=103,104,2
d. Ozone/UV AOP=104,105,2
4. Activated Carbon Adsorption=106,107,1
a. Adsorption Theory=106,107,1
b. Adsorption Equilibrium=107,108,3
c. Breakthrough Of Adsorption Column=109,110,2
Chapter III. Results=111,112,1
Section 1. Devlopment Of Effective Advanced Treatment Process For Recalcitrant Textile Dyeing Wastewater=111,112,1
1. Process Analysis For Banwol Textile Dyeing Wastewater Treatment Plant=111,112,2
a. Sampling And Analysis=112,113,2
b. Results And Discussion=113,114,14
c. Summary Of Research Results=126,127,2
2. Isolation Of Degraders=128,129,1
a. Sampling=129,130,2
b. Separation And Cultivation Of Microorganisms=130,131,2
c. Isolation Of Microorganisms=132,133,8
d. Results Of Isolation Of Microorganisms=140,141,7
e. Summary Of Research Results=147,148,1
3. Manufacturing Of Cell-Immobilized Media=148,149,1
a. Materials And Synthesis Of Immobilizing Polymer=148,149,25
b. Development And Utilization Of Media Synthesizer=173,174,4
c. Summary Of Research Results=177,178,2
4. Monitoring And Improvement Of Cell-Immobilized Media=179,180,1
a. Monitoring Of Nitrifying Bacteria Immobilized Media=179,180,6
b. Monitoring Of Immobilized Media In SBR=185,186,4
c. Monitoring Of Immobilized Media In PBR And FBR=188,189,7
d. Improvement Of Media(Specific Gravity)=195,196,2
e. Summary Of Research Results=197,198,1
5. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media=198,199,1
a. SBR Operation Using Suspended Growth Microorganisms=198,199,13
b. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(SBR)=211,212,5
c. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(Lab-Scale Reactor)=216,217,15
d. Textile Dyeing Wastewater Treatment By Cell-Immobilized Media(Pilot Plant)=231,232,12
e. Summary Of Research Results=243,244,4
6. Textile Dyeing Wastewater Treatment By Advanced Oxidation Processes=247,248,1
a. Ozone Oxidation Process=247,248,17
b. Activated Carbon Adsorption And Fenton Oxidation Process=264,265,14
c. Summary Of Research Results=278,279,2
7. Immobilized Media Process With Anaerobic Pre-Treatment=280,281,2
a. Color Removal From Textile Dyeing Wastewater By Anaerobic Reactor=281,282,10
b. Non-Biodegradable Organic Compounds Removal By Aerobic Reactor=291,292,15
c. Summary Of Research Results=305,306,2
Section 2. Improvement Of Banwol Textile Dyeing Wastewater Treatment Plant=307,308,1
1. Present States Of Banwol Textile Dyeing Wastewater Treatment Plant And Related Problems=307,308,1
a. Present State Of Wastewater Treatment Plant=307,308,5
b. Operating Conditions Of Wastewater Treatment Plant=312,313,5
c. Process Analysis Of Wastewater Treatment Plant=317,318,5
d. Summary Of Research Results=322,323,1
2. Improvement Plan For Biological Treatment Process=323,324,1
a. Organics Removal At Various Media Packing Ratio(Batch Test)=323,324,6
b. Organics Removal At Various Media Packing Ratio(Pilot Plant)=328,329,16
c. Cost Analysis=344,345,3
d. Summary Of Research Results=346,347,2
3. Improvement Plan For Banwol Textile Dyeing Wastewater Treatment Plant=348,349,1
a. Purpose Of Wastewater Treatment Plant Improvement=348,349,1
b. Estimated Water Quality After Process Improvement=349,350,2
c. Final Improvement Plan And Economical Effects=351,352,2
4. Basic Research For Optimization Of Fenton Oxidation Process=353,354,1
a. Optimization For Injection Condition Of Fenton's Reagent=353,354,10
b. Optimization For Combined Process With Iron Coagulation And Fenton Oxidation=363,364,9
c. Summary Of Research Results=372,373,1
5. Optimization Of Fenton Oxidation Process=373,374,1
a. Present State Of Fenton Oxidation Process In Banwol Textile Dyeing Wastewater Treatment Plant=373,374,2
b. Process Analysis Of Fenton Oxidation Treatment=375,376,5
c. Comparison Of Fenton Oxidation And Ferric Coagulation=380,381,4
d. Combined Process With Iron Coagulation And Fenton Oxidation=384,385,6
e. Summary Of Research Results=390,391,1
6. Optimization Of Fenton-Like Process Using Fe(III)=391,392,1
a. Dye Removal Efficiency By Using Various Fe(III) At Fenton-Like Process=391,392,2
b. Textile Dyeing Wastewater Treatment By Fenton-Like Reaction=393,394,6
c. Summary Of Research Results=398,399,1
7. Influence Of Dissolved TiO₂ In Wastewater Treatment=399,400,1
a. Introduction Of TiO₂/UV System=399,400,2
b. Fe2+ And Fe3+ As Fenton Oxidation Reagent=401,402,2
c. Effects Of UV In Fenton Oxidation Process=402,403,2
d. Effects Of UV In Fenton-Like Oxidation Process=403,404,2
e. Effects Of TiO₂ Concentration=404,405,2
f. Effects Of Hisol In Degradation Of Textile Dyeing Wastewater=405,406,2
g. Effects Of Dissolved Ti4+ In Photodegradation=406,407,2
h. Dye Variation According To TiO₂ Photodegradation=408,409,2
i. Summary Of Research Results=410,411,1
Section 3. Application And Technology Marketing=411,412,1
1. Combination Of Unit Processes To Meet Various Discharge Standards=411,412,5
2. Application To Other Wastewaters=416,417,2
3. Application For National New Technology=418,419,1
Chapter IV. Degree Of Achievement Of Goals And Contribution To Related Research=419,420,1
Section 1. Research Goals=419,420,1
1. Research Goals=419,420,2
2. Degree Of Achievement Of Research Goals=421,422,4
3. Results Of Research=425,426,6
Section 2. Contribution To Related Research=431,432,2
Chapter V. Application Plans Of The Research Results=433,434,2
Chapter VI. References=435,436,8
jpg
Figure III-2-40. COD Removal Efficiency At Different Catalyst And Concentration Of Fe(III)=394,395,1
Figure III-2-41. UV Transmittance Profiles Of Raw Wastewater And Treated Wastewater At Different Fe(III) Catalyst=394,395,1
Figure III-2-42. COD Removal Efficiency At Different Concentration Of H₂O₂ And Fe(III) Catalyst=395,396,1
Figure III-2-43. COD Removal Efficiency At Different Dosing Ratio Of FeCl₂ : Hisol=396,397,1
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.