본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

CHAPTER 1 통계학 기본
_1.1 통계학
_1.2 왜 기술통계가 필요한가
_1.3 왜 추론통계가 필요한가

CHAPTER 2 파이썬과 주피터 노트북
_2.1 환경 구축
_2.2 주피터 노트북
_2.3 파이썬 프로그래밍
_2.4 넘파이와 팬더스

CHAPTER 3 기술통계
_3.1 데이터 분류
_3.2 수식을 읽는 방법
_3.3 도수분포
_3.4 1변량 데이터 통계량
_3.5 다변량 데이터 통계량
_3.6 층화분석
_3.7 그래프 활용

CHAPTER 4 확률과 확률분포
_4.1 확률론
_4.2 확률분포
_4.3 이항분포
_4.4 정규분포

CHAPTER 5 통계적 추정
_5.1 통계적 추론의 개념
_5.2 모집단에서 표본추출 시뮬레이션
_5.3 모평균 추정
_5.4 모분산 추정
_5.5 정규모집단에서 파생된 확률분포
_5.6 구간추정

CHAPTER 6 통계적 가설검정
_6.1 모평균에 대한 단일표본 T검정
_6.2 평균값 차이 검정
_6.3 분할표 검정
_6.4 검정 결과 해석

CHAPTER 7 통계모델
_7.1 통계모델 기본
_7.2 선형모델을 만드는 방법
_7.3 데이터 표현과 모델 명칭
_7.4 파라미터 추정: 가능도 최대화
_7.5 파라미터 추정: 손실 최소화
_7.6 예측 정확도 평가와 변수 선택

CHAPTER 8 정규선형모델
_8.1 연속형 독립변수가 하나인 모델: 단순회귀
_8.2 정규선형모델 평가
_8.3 분산분석
_8.4 독립변수가 여럿인 모델

CHAPTER 9 일반화선형모델
_9.1 일반화선형모델 기본
_9.2 로지스틱 회귀
_9.3 일반화선형모델 평가
_9.4 푸아송 회귀

CHAPTER 10 통계학과 머신러닝
_10.1 머신러닝 기본
_10.2 정규화와 리지 회귀, 라소 회귀
_10.3 파이썬을 이용한 리지 회귀와 라소 회귀
_10.4 선형모델과 신경망

이용현황보기

(파이썬으로 배우는) 통계학 교과서 : 기술통계, 통계모델, 선형모델, 머신러닝까지 통계학 입문을 위한 이론과 실전 가이드 이용현황 표 - 등록번호, 청구기호, 권별정보, 자료실, 이용여부로 구성 되어있습니다.
등록번호 청구기호 권별정보 자료실 이용여부
0003159329 519.5 -25-2 서울관 인문자연과학자료실(314호) 이용가능
0003159330 519.5 -25-2 서울관 인문자연과학자료실(314호) 이용가능
B000123930 519.5 -25-2 부산관 주제자료실(2층) 이용가능

출판사 책소개

알라딘제공
수식과 파이썬 코드로 이해하는 기초와 실전!
데이터 분석에서 머신러닝까지
파이썬으로 배우는 통계


통계학이 어렵게 느껴지는 이유 중 하나는 이해해야 할 것이 너무 많다는 점입니다. 중요한 점은 개념 간 연결 관계를 파악하는 것입니다. 이 책은 독자가 개념들이 서로 어떻게 관련되어 있는지 쉽게 이해할 수 있도록 구성되었습니다.

1장에서 6장까지는 통계학 입문서의 성격을 띠며 기술통계, 확률과 분포의 기본, 통계적 추정 및 통계적 가설검정을 다룹니다. 7장부터 10장에서는 통계모델, 회귀분석, 선형모델 등의 분석 방법을 알아봅니다. 또한 예측 기술로서 머신러닝과의 접점을 다루어 통계학 기초부터 머신러닝에 이르기까지의 흐름을 이해할 수 있도록 구성했습니다.

통계에 관한 세세한 노하우와 팁보다는 통계 용어와 기본 수식, 간단한 파이썬 문법으로 구현하는 데 집중하여 통계학 기초를 다지기 위해 최선을 다했습니다. 글, 수식, 파이썬 코드로 같은 내용을 세 번에 걸쳐 설명하므로 점차 깊이 있게 내용을 이해할 수 있을 것입니다. 통계를 모르는 개발자나, 파이썬이 익숙하지 않지만 통계를 공부해보려는 독자가 데이터 분석에 필요한 통계를 배우려 한다면 이 책을 추천합니다.

초판과 달라진 점
· 초보자가 쉽게 학습할 수 있도록 구현 순서를 따라가며 해설하는 방식으로 구성을 개선했습니다.
· 이 책은 파이썬을 사용해 데이터를 분석하고 싶은 분들을 위한 책입니다. 파이썬 실습 코드를 점검하고 수정했습니다.
· 기술통계, 추론통계 실습 등에 대한 내용이 늘었습니다. 데이터를 처리하는 데 매우 중요한 기술이나 아이디어를 설명하는 부분이 늘었고, 층화분석과 같은 실용적인 기술도 절을 할애해 설명을 더했습니다.

주요 내용
· 통계학 기본
· 파이썬 기초와 주피터 노트북 설정
· 기술통계
· 확률과 확률분포
· 통계적 추정과 가설검정
· 통계모델
· 정규선형모델과 일반화선형모델
· 통계학과 머신러닝

책속에서

알라딘제공