권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
Title page 1
Contents 7
Abstract 4
Résumé 5
Acknowledgements 6
Executive summary 9
1. Introduction 11
2. National GHG emission inventoryd atasets 14
2.1. The PRIMAP-hist national historical emission time series (PRIMAP) 16
2.2. Emission Database for Global Atmospheric Research (EDGAR) 17
2.3. Climate Watch GHG Emission database (CLIMWATCH) 18
3. Comparison of datasets 19
3.1. Availability of disaggregated data on emission categories 19
3.2. Alignment of emissions data 20
3.3. Discussion 26
4. Compiling a global dataset of GHG inventories 27
5. Next steps 29
References 31
Annex A. Additional comparisons 33
Annex B. Preliminary results 48
Tables 8
Table 1. Three selected unofficial datasets that provide global coverage and high timeliness 15
Table 2. The breakdown by emission categories varies substantially across datasets 20
Figures 7
Figure 1. There are important data gaps in GHG emission inventories for selected UNFCCC non-Annex-I countries 12
Figure 2. PRIMAP emission levels align best with UNFCCC data among unofficial inventories 22
Figure 3. Emission levels of PRIMAP align best for big emitters 23
Figure 4. PRIMAP emission trends align best with UNFCCC data 24
Figure 5. PRIMAP shows the best alignment to official data at the first IPCC category level 25
Boxes 14
Box 1. Compilation principles and classifications of GHG emission data 14
Annex Figures 8
Figure A.1. PRIMAP also aligns with linearly interpolated official data 33
Figure A.2. PRIMAP emission levels align best with official data for each CO₂, CH₄ and N₂O gas 34
Figure A.3. Availability of granular data for Annex-I countries 35
Figure A.4. Availability of granular data for non-Annex-I countries 36
Figure A.5. Differences in emission levels are higher for the first level of IPCC categories 37
Figure A.6. Discrepancies in CO₂ emission levels are lowest for energy 38
Figure A.7. Discrepancies in CH₄ emission levels are lowest for agriculture 39
Figure A.8. Discrepancies for N₂O are lowest for agriculture and waste 40
Figure A.9. Unofficial data on emissions from energy align best with official data for countries with a higher relative size of the category 41
Figure A.10. Unofficial data on emissions from industrial processes and product use align best with official data for countries with a higher relative size of the category 42
Figure A.11. PRIMAP data on emissions from agriculture align best with official data for countries with a higher relative size of the category 43
Figure A.12. PRIMAP emission trends align best with UNFCCC across all first level IPCC categories 44
Figure A.13. Energy subcategories show discrepancies across all datasets for Non-Annex I countries 45
Figure A.14. Chile's GHG emission inventories 46
Figure A.15. Germany's GHG emission inventories 46
Figure A.16. China's GHG emission inventories 47
Figure A.17. India's GHG emission inventories 47
Figure B.1. The strategy allows to fill important gaps in official data for OECD partner countries 48
Figure B.2. The strategy allows to fill gaps for OECD countries 48
Figure B.3. Compiled GHG emission estimates by country groups 49
Figure B.4. Trends in compiled GHG emission estimates by country groups 49
Figure B.5. CO₂, CH₄ and N₂O emissions by country groups 50
Figure B.6. GHG emissions by IPCC categories and country groups 51
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.