본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title page 1

Contents 1

Abstract 3

1. Introduction 4

2. Conceptual framework 7

2.1. Section Overview 7

2.2. AI Capital: A Framework for Higher Education and Employability 8

2.3. The Academic Impact of AI Education 10

2.4. Inequalities in Access to AI Education and Capital Formation 11

2.5. The AI Learning-Capital-Employment Transition Model 13

3. AI Capital of Students scale 14

4. Module structure 16

4.1. Students enrolled in the module 16

4.2. Aims of the module 16

4.3. Delivery of the module 17

4.4. Module assignments 19

4.5. Pedagogical principles and innovations in the AI Business Environments module 20

4.5.1. Learning theories 21

4.5.2. Inclusive design and delivery in practice 22

4.5.3. Innovations 23

5. Data set and data gathering 25

6. Validation of the AI Capital of Students scale 26

7. Descriptive statistics 27

8. Estimates 29

8.1. Estimation strategy 29

8.2. Outcomes 30

9. Discussion 32

9.1. Outcomes evaluation 32

9.2. Contributions 34

9.3. Implications for educational theory and pedagogical practice 36

9.4. Policy Implications 38

9.5. Limitations and future research 39

10. Conclusions 40

References 42

Appendix 52

Tables 45

Table 1. Descriptive statistics 45

Table 2. Tabulation analysis. Mean (Std. Dev.) 46

Table 3. Correlation matrix 47

Table 4. Regression outcomes 48

Table 5. Regression outcomes 49

Table 6. Regression outcomes 50

Table 7. Regression outcomes 51

Figures 57

Figure 1. AI Learning-Capital-Employment Transition Model 57

Appendix Tables 52

Table A.I. AI Capital of Students scale: Mean (Std. Dev.) 52

Table A.II. Learning objectives and applied learning developments for the module AI in Business Environments 54

Table A.III. Scale Validation 56