본문바로가기

자료 카테고리

전체 2,876
도서자료 2,311
학위논문 0
연속간행물·학술기사 0
멀티미디어 4
동영상 1
국회자료 2
특화자료 558

도서 앰블럼

전체 (2,311)
일반도서 (1,075)
E-BOOK (0)
고서 (0)
세미나자료 (13)
웹자료 (1,223)
전체 (0)
학위논문 (0)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (4)
오디오자료 (0)
전자매체 (4)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (1)
동영상자료 (1)
전체 (2)
외국법률번역DB (2)
국회회의록 (0)
국회의안정보 (0)
전체 (558)
표·그림DB (556)
지식공유 (2)

도서 앰블럼

전체 2,876
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 2,876건)

검색결과제한

열기
  • 소장도서관
  • 원문
  • 발행년도
    -
  • 언어
  • 원문이용안내
    • pdf 파일 아이콘
      모든 이용자
    • 협정기관 이용자용 pdf 파일 아이콘 협정기관 이용자용 pdf 파일 아이콘
      협정기관 이용자
    • 국회도서관 방문 이용자용 pdf 파일 아이콘 국회도서관 방문 이용자용 pdf 파일 아이콘
      국회도서관 방문 이용자
    • 원문 아이콘이 없는 경우 국회도서관 방문 시 책자로 이용 가능

자료명/저자사항
원자력시설 DD&R 기술 개발 인기도
발행사항
과천 : 미래창조과학부, 2017
청구기호
전자형태로만 열람 가능함
자료실
전자자료
형태사항
1 온라인 자원 : PDF
총서사항
원자력기술개발사업
제어번호
MONO1202018809
주기사항
표제관련정보: 원자력시설 고도제염기술 개발
대등표제: Development of advanced decontamination technologies for nuclear facilities
과제관리기관명: 한국연구재단
주관연구기관명: 한국원자력연구원
과제책임자: 최왕규
원문

목차보기더보기

[표지]

제출문

보고서 요약서

요약문

SUMMARY

Contents

목차

제1장 연구개발과제의 개요 46

제1절 연구배경 46

제2절 추진현황 및 연구내용 48

1. 추진현황 48

2. 연구내용 49

제2장 국내외 기술개발 현황 52

제1절 국내외 원전 일차계통 화학제염 기술개발 현황 52

1. 국내 기술개발 현황 52

2. 국외 기술개발 현황 57

제2절 국내외 나노복합유체 제염 기술 개발 현황 77

1. 국내 기술개발 현황 77

2. 국외 기술개발 현황 78

3. 현재의 복합유체 제염기술의 취약성 95

제3장 연구개발수행 내용 및 결과 98

제1절 원전 일차계통 무착화성 화학제염 기술 개발 98

1. 무착화성 화학제염제 개발 연구 98

2. 무착화성 화학제염제 단위 공정 연구 115

3. 무착화성 폐액 처리 공정 연구 143

4. 화학제염에 의한 일차계통 재료의 종합 건전성 평가 154

5. 무착화성 화학제염제 개발 연구 187

6. 원전 일차계통 무착화성 화학제염 시스템 확보 262

7. 결과요약 298

제2절 대형기기 나노복합유체 제염 기술 개발 300

1. 나노복합유체 특성 연구 300

2. 나노복합유체 제조 연구 322

3. 나노복합유체 제염 단위공정 연구 351

4. 대형기기 나노복합유체 신제염 공정성능 최적화 408

5. 대형기기 나노복합유체 신제염 시스템 확보 433

6. 결과요약 491

제4장 목표달성도 및 관련분야에의 기여도 492

1. 목표달성도 492

2. 대외기여도 493

제5장 연구개발결과의 활용계획 495

1. 기술적 측면 495

2. 경제적 측면 495

3. 사회적 측면 496

제6장 연구개발과정에서 수집한 해외과학기술정보 498

제7장 연구장비의 구축 및 활용 결과 500

제8장 참고문헌 502

Table 1. Development history of decontamination technologies by Siemens 59

Table 2. Typical condition CORD process 64

Table 3. Features of HP-CORD UV process 64

Table 4. Typical condition LOMI process 65

Table 5. Comparison of typical organic acid-based decontamination processes 66

Table 6. Features of typical organic acid-based decontamination processes 67

Table 7. Solutions created for testing (all percentage indicate percentage... 83

Table 8. Results of short-term vertical slip tests [2.2.13] 84

Table 9. Results of long-term vertical slip tests [2.2.13] 84

Table 10. Composition and experimental results for decontamination foam 88

Table 11. Dissolved amount of magnetite on anode electrode 98

Table 12. Experimental condition of pre-screening test 99

Table 13. Experimental conditions for screening test 1 100

Table 14. Experimental conditions for screening test 2 103

Table 15. Bonding distance and angle of [Cu(I)(NH₂NH₃ )Cl₂]n₋ 112

Table 16. Solubility product and equilibrium constant of metal ions 116

Table 17. Optimal condition for magnetite dissolution with N₂H₄/HNO₃/M⁺ⁿ 122

Table 18. Comparison of initial dissolution rates of magnetite between... 132

Table 19. Condition of multi-step decontamination for 304SS specimens 134

Table 20. Condition of multi-step decontamination for Inconel 600 experiments 139

Table 21. Chemical composition of double layer structure of oxide in PWRs 155

Table 22. Operating conditions for three corrosion tests 161

Table 23. Properties of simulated grown-on and deposited oxide 163

Table 24. Iron-related (a) and Nickel-related (b) species in OA-containing... 180

Table 25. Summary of corrosion properties of Inconel-600 and 304SS 183

Table 26. Summary of mechanical properties of Inconel-600 CERT-tested in high... 186

Table 27. Required linear velocities for RPV, SG-tube, and pipelines based... 188

Table 28. Experimental condition of once-through decontamination process 191

Table 29. Results of once-through experiment in terms of... 192

Table 30. Experimental results of dissolved Ni²⁺ ions from nickel-ferrite... 199

Table 31. Experimental results of dissolved Fe²⁺ ions from nickel-ferrite... 199

Table 32. Experimental results of dissolved Ni²⁺ ions from nickel-ferrite... 200

Table 33. Experimental results of dissolved Fe²⁺ ions from nickel-ferrite... 200

Table 34. Summary of corrosion behavior of Inconel-600, 690 and SUS304... 237

Table 35. Concentration of metal ions after sulphate... 244

Table 36. Characteristics of filtering bleb for filter press tests 246

Table 37. Results of filtration efficiency for filtering blebs... 246

Table 38. Values of rate constants in magnetite dissolution 255

Table 39. Standard Gibbs energies of formation 260

Table 40. Comparison of chemical concentration in the solution between... 264

Table 41. Calculation table of solid waste volume for 1 cycle HMnO₄ + ... 266

Table 42. Calculation table of solid waste volume for 1 cycle KMnO₄ + ... 267

Table 43. Calculation table of solid waste volume for 1 cycle HMnO₄... 268

Table 44. Calculation table of solid waste volume for 1 cycle KMnO₄... 268

Table 45. Comparison of radioactivity between before precipitation and... 270

Table 46. Concentration of sulphate and metal ions in decontamination waste 284

Table 47. Inconel 690 specimen and surface dose withdrawn from... 292

Table 48. Comparison of decontamination reagents and chemicals between... 293

Table 49. Requirements for the formation and stabilization of foam 301

Table 50. Components and mail requirement of decontamination foam 302

Table 51. Product name, description, and viscosity of surfactants 305

Table 52. Selection of nanoparticle to enhance the performance of... 307

Table 53. Characteristic of core-shell mesoporous silica NPs 311

Table 54. Characteristic of mesoporous silica synthesized... 315

Table 55. Characteristic of mesoporous silica synthesized with various... 317

Table 56. Components of complex-fluid of CEA and KAERI 320

Table 57. Requirements for the formation and stabilization of foam 324

Table 58. Typical silane coupling agents used for surface modification of silica NPs 335

Table 59. Liquid volume in foam and particle size of complex-fluid... 354

Table 60. Composition of KAERI complex fluid and commercial complex fluid 354

Table 61. Comparison of liquid fraction in film between KAERI and CEA... 355

Table 62. Effect of modification pH on contact angle of... 368

Table 63. Effect of molar ratio of coupling agent/si... 369

Table 64. Effect of wt. % of silica nano particles on foam... 369

Table 65. Decontamination %, foam volume and contact angle of nano... 372

Table 66. Nitrogen adsorption data of KAERI-1, KAERI-N,... 394

Table 67. The model parameters for sorption of Co adsorbed onto... 396

Table 68. The sorption capacity for Co onto K-N, K-N2 and K-N3+1 %... 397

Table 69. The model parameters for sorption of Co adsorbed onto... 400

Table 70. The sorption ratio of Co adsorbed onto AMP at pH 2 401

Table 71. The sorption ratio of Cs adsorbed onto AMP... 402

Table 72. The removal ratio for sorption of Co adsorbed onto AMP... 403

Table 73. Various surfactants tested for foam stability in Ce/HNO₃ medium 414

Table 74. Type of chemical decontaminating solution and foam... 451

Table 75. EDX analysis result for FeCr₂O₄ specimen 456

Table 76. Foaming conditions in foam decontamination system for large scale tank 461

Table 77. Various formulation of complex-fluid with silica nanoparticles 472

Table 78. Decontamination efficiency Co and Cs using the foam... 476

Table 79. Decontamination efficiency of Co and Cs for... 479

Table 80. MCA analysis results of radioactive contaminated... 480

Table 81. Formulation of KAERI and CEA foam decontaminating agents... 481

Fig. 1. Annual average radiation exposures at LWRs-1970-1998[2.1.3] 57

Fig. 2. Development of decontamination technology... 59

Fig. 3. Principle of HP-CORD UV process [2.1.5], Courtesy of... 63

Fig. 4. Experimental protocol developed to plot the drainage... 80

Fig. 5. Stainless steel plate covered with adherent deposits are... 81

Fig. 6. Decontamination foam test in NNL 87

Fig. 7. (a) Optical micrograph of the SU-8 microrods used... 89

Fig. 8. (a) Time dependence of the volume of foams, Vf, formed with SU-8... 90

Fig. 9. Comparison of the appearance and structure of foams stabilized by (a,d)... 90

Fig. 10. Diagram for decontamination using INL foam 91

Fig. 11. pH-dependent behavior of foams prepared in batch... 92

Fig. 12. Volume of foam (V) produced at room temperature from 7 cm³... 93

Fig. 13. Appearance of vessels at room temperature at 10 min (upper) and... 93

Fig. 14. Hierarchical features of the particle-stabilized foams containing short... 94

Fig. 15. Process of large and complex facility using decontamination foam in CEA 95

Fig. 16. X-ray diffraction pattern of (a) pure Fe₃O₄,... 100

Fig. 17. Dissolved fraction of magnetite in the presence... 101

Fig. 18. Dissolved fraction of magnetite against time... 102

Fig. 19. Dissolved fraction of magnetite against time... 102

Fig. 20. Dissolved fraction of magnetite in various candidate... 103

Fig. 21. Dissolved fraction of magnetite against time at CA+... 104

Fig. 22. Dissolved fraction of magnetite against... 105

Fig. 23. Dissolved fraction of magnetite against... 106

Fig. 24. Dissolved fraction of magnetite against time... 106

Fig. 25. Dissolved fraction of magnetite against [N₂H₄]... 107

Fig. 26. Effect of metal ion addition, ([M²⁺]=0.0005 M, [N₂H₄]... 108

Fig. 27. Far-FTIR spectrum of Cu(I)(N₂H₅)Cl₂ 111

Fig. 28. Single crystal structure of Cu+(N₂H₅)+Cl₂ 111

Fig. 29. Cyclic voltammogram of N₂H₄(2 mM) + Cu (0.05 mM) solution... 113

Fig. 30. Cyclic voltammogram of Cu⁺/Cu²⁺system on ITO electrode 113

Fig. 31. Variation of charge on ITO electrode against time 114

Fig. 32. Reaction scheme on the ITO electrode 114

Fig. 33. Maximum metal ion concentration in terms of... 116

Fig. 34. Dissolved fraction of magnetite against time... 117

Fig. 35. Dissolved fraction of magnetite against time... 118

Fig. 36. Arrhenius plot on the magnetite dissolution 118

Fig. 37. Dissolved fraction of magnetite against time... 119

Fig. 38. Dissolved fraction of magnetite against [Cu⁺]... 120

Fig. 39. Dissolved fraction of magnetite against time... 120

Fig. 40. Pourbaix diagram of Cu 121

Fig. 41. Schematic procedure and mechanisms of multi-step(oxidation and reduction)... 123

Fig. 42. Fabricated high temperature reactor 124

Fig. 43. Effect of temperature on the dissolution of... 124

Fig. 44. Variation of [N₂H₄] against time( [N₂H₄]=0.04 M,... 125

Fig. 45. Effect of [N₂H₄] on the dissolution of magnetite... 126

Fig. 46. Comparison of magnetite dissolution... 127

Fig. 47. Result of magnetite dissolution by varied N₂H₄... 128

Fig. 48. Comparison of Initial reaction rate by... 129

Fig. 49. Dissolved fraction of Fe₃O₄ in solution as function of... 130

Fig. 50. Dissolved fraction of Fe₃O₄ with different... 131

Fig. 51. Model of reaction rate change against time 131

Fig. 52. Comparison of magnetite dissolution between N₂H₄/H₂ SO₄/Cu⁺... 133

Fig. 53. Dissolved metal ion from stainless steel oxide layer, oxidation... 135

Fig. 54. Dissolved metal ion from stainless steel oxide layer... 136

Fig. 55. Dissolved metal ion from stainless steel oxide layer, oxidation... 137

Fig. 57. SEM image of stainless steel surface (X 500) before dissolution test... 138

Fig. 58. (a) SEM image of stainless steel surface (X 500) after dissolution test... 138

Fig. 59. Dissolved metal ion from Inconel 600 oxide layer, oxidation... 139

Fig. 60. (a) SEM image of Inconel 600 surface (X 500) before... 140

Fig. 61. (a) SEM image of Inconel 600 surface (X 500) after... 140

Fig. 62. Photographs of FTL specimens, (a) after the first... 141

Fig. 63. Variation of contact dose rate according to the applied cycles,... 141

Fig. 64. Photographs of Inconel 600 specimen, (a) after the first... 142

Fig. 65. Change of [N₂H₄] against time at 70 ℃ ( [Cu²⁺]₀=... 143

Fig. 66. Change of [N₂H₄] against time at 80℃ ( [Cu²⁺]₀=5 × 10⁻⁴... 144

Fig. 67. Change of [N₂H₄] against the accumulate... 144

Fig. 68. Change of [N₂H₄] against the accumulate volume of 30 % H₂O₂ under... 145

Fig. 69. Change of [N₂H₄] against the accumulate volume of 30 % H₂O₂ under... 146

Fig. 70. Ion chromatogram of ammonium ion 148

Fig. 71. Ion chromatogram of nitrate ion 148

Fig. 72. Ion chromatogram of nitrite ion 148

Fig. 73. Decomposition of [N₂H₄] under varied... 149

Fig. 74. Decomposition of [NO₃⁻] under varied... 149

Fig. 75. Generation of [NH₄⁺] under varied... 150

Fig. 76. Generation of [NO₂⁻] under varied... 150

Fig. 77. Variation of [N₂H₄] against [Cu²⁺] under... 151

Fig. 78. Variation of [NH₄⁺] against [Cu²⁺] under two... 151

Fig. 79. Variation of [N₂H₄] against pH under two... 152

Fig. 80. Variation of [NH₄⁺] against pH under two... 152

Fig. 81. Comparison of radiolysis characteristic among EDTA,... 153

Fig. 82. Schematic representation of formation of radioactive deposits in PWRs 154

Fig. 83. Double layer structure of radioactive oxide in PWRs 155

Fig. 84. Four layer model of radioactive oxide in PWRs [3.1.11] 156

Fig. 85. Flow diagram of high temperature corrosion test loop system 158

Fig. 86. Photo of high temperature corrosion test loop 158

Fig. 87. Schematic diagram of semi-loop system 159

Fig. 88. Control of (a) temperature, (b) pressure and (c)... 160

Fig. 89. Oxide surface corroded in various conditions 161

Fig. 90. Surface appearance of oxide... 161

Fig. 91. SEM photo of oxide corroded in (a) test 1, (b) test 2 and test 3 of... 162

Fig. 92. TEM photo and line scan profiles of oxide corroded in test 1; (a)... 162

Fig. 93. TEM photo and SAD pattern of the oxide corroded in test 1; (a)... 163

Fig. 94. General corrosion test... 164

Fig. 95. Crevice corrosion test specimen 165

Fig. 96. CERT specimen 165

Fig. 97. Effect of pH on corrosion rates of Inconel-600 and... 166

Fig. 98. Effect of pH on surface corrosion morphology of Inconel-600 and... 167

Fig. 99. Effect of metal ion on the corrosion of Inconel-600 in... 167

Fig. 100. Effect of metal ion on the localized corrosion morphology of 304SS... 168

Fig. 101. Effect of Fe³⁺ and Cr⁶⁺ ion on the localized corrosion morphology... 168

Fig. 102. Comparison of general corrosion rate of... 169

Fig. 103. Potentiodynamic polarization curve of... 170

Fig. 104. Comparison of general corrosion rate of Inconel-600... 171

Fig. 105. Optical microscopic image of surface morphology of Inconel-600 and... 171

Fig. 106. General corrosion rate of Inconel-600 and 304 SS... 172

Fig. 107. Surface appearance of Inconel-600 and 304 SS crevice-corroded... 174

Fig. 108. Effect of pH on surface appearance... 175

Fig. 109. Effect of pH on surface appearance... 175

Fig. 110. Effect of pH on corrosion rate of... 176

Fig. 111. Effect of pH on pitting morphology of 304 SS crevice-corroded... 178

Fig. 112. Surface morphology of (a) Inconel-600... 178

Fig. 113. SEM Photograph and chemical... 179

Fig. 114. SEM Photograph of Alloy 600 crevice... 179

Fig. 115. Oxalate base(a) and iron base(b) chemical composition... 181

Fig. 116. Oxalate base(a) and nickel base(b) chemical composition of... 181

Fig. 117. Effect of total metal ion concentration on the (a) Ni-oxalate... 182

Fig. 118. Plots of total metal ion concentration vs... 182

Fig. 119. Comparison of ultimated tension stress (UTS) of... 184

Fig. 120. Comparison of stress to strain curves of I-600... 184

Fig. 121. Effect of temperature on UTS of Inconel-600 in high... 185

Fig. 122. Fracture surface morphology of Inconel-600 after CERT in (a) high... 185

Fig. 123. P&ID of bench-scale(10 L) decontamination test process for reactor... 187

Fig. 124. Design of decontamination test... 189

Fig. 125. Picture of decontamination chamber w/ scafold... 190

Fig. 126. Dissolved concentration of Fe and Cr in ppm from simulated oxide... 193

Fig. 127. Growth of the double layer of inner and... 194

Fig. 128. Four layer model of radioactive oxide... 194

Fig. 129. Electron-beam evaporator 195

Fig. 130. XRD patterns of NiFe₂O₄ after heat treatment,... 196

Fig. 131. SEM image of NiFe₂O₄ after (a) as-deposited and (b)... 196

Fig. 132. EDS mapping image of Ni, Fe, O and spectrum 197

Fig. 133. XPS spectrum of the (a)Ni2p3/2 , (b) Fe2p, and (c) O1s...[이미지참조] 197

Fig. 134. One-stage decontamination process and... 202

Fig. 135. ORP and pH monitoring of a... 206

Fig. 136. Detail ORP and pH monitoring for... 206

Fig. 137. Detail ORP and pH monitoring for... 207

Fig. 138. Small-scale waste treatment and process monitoring... 207

Fig. 139. Continuous system monitoring for a... 209

Fig. 140. Comparison of process monitoring... 210

Fig. 141. Effect of temperature on the process... 210

Fig. 142. Effect of temperature and flow speed on the... 211

Fig. 143. Results of cyclic voltammetry ITO electrode for (a)... 213

Fig. 144. Solution of (a) 1 mM BCA + 0.1 mM Cu(NO₃)₂ (b)... 214

Fig. 145. EC redox cycling of using UV-Vis spectroscopy(1 mM BCA, 0.1... 214

Fig. 146. Comparion of the current of potassium ferricyanide(III) on... 215

Fig. 147. Fe₃O₄ 를 증착한 ITO 전극에서 chronoamperometry를... 215

Fig. 148. Fe₃O₄ 를 증착한 ITO 전극에서 chronoamperometry를... 216

Fig. 149. (a)EC redox cycling of Cu²⁺ and NH₂NH₂(NH₃BH₃), and (b)... 217

Fig. 150. Schematic principle of Cu deposition 218

Fig. 151. Bare ITO 전극에서 Cu deposition 확인(quiet... 218

Fig. 152. Fe₃O₄ 를 증착한 ITO 전극에서 Cu deposition 확... 219

Fig. 153. Bare ITO 전극에서 Cl-가 존재할 때 Cu... 219

Fig. 154. Fe₃O₄ 를 증착한 ITO 전극에서 Cl-가 존재할... 219

Fig. 155. Effect of pH on corrosion rate of... 220

Fig. 156. Surface appearance of SUS304 and Inconel-600 after... 221

Fig. 157. Effect of pH on corrosion rate of Inconel-600... 222

Fig. 158. Comparison of general corrosion rate of Inconel-600... 223

Fig. 159. Surface appearance of SUS304 and I-600 after... 223

Fig. 160. General corrosion rate of Inconel-600 and SUS304 in the... 224

Fig. 161. Surface appearance of I-690, I-600 and SUS304 after... 225

Fig. 162. Surface appearance of I-690, I-600 and SUS304 after... 225

Fig. 163. Surface appearance of I-690, I-600 and SUS304 after... 226

Fig. 164. Surface appearance of I-690, I-600 and SUS304 after... 226

Fig. 165. Effect of pH on the general corrosion rate of... 227

Fig. 166. Surface appearance and CRUD morphology of I-600 after soaking... 228

Fig. 167. Surface appearance and CRUD morphology of I-690 after... 228

Fig. 168. Surface appearance and CRUD morphology of SUS304 after... 229

Fig. 169. General corrosion rate of Inconel-600, 690 and SUS304 in... 229

Fig. 170. Surface appearance of Inconel-600, 690 and SUS304 after soaking... 231

Fig. 171. Surface appearance of Inconel-600, 690 and SUS304 after soaking... 232

Fig. 172. Surface appearance of Inconel-600, 690 and SUS304... 233

Fig. 173. Effect of pH on general corrosion... 233

Fig. 174. Surface appearance of Inconel-600, 690 and... 235

Fig. 175. Surface appearance of Inconel-600, 690 and... 235

Fig. 176. Surface appearance of Inconel-600, 690 and... 235

Fig. 177. Surface appearance and CRUD... 236

Fig. 178. Effect of pH on corrosion rate of... 236

Fig. 179. Variation of [NO₃⁻] and [N₂H₄] against time, [Cu⁺]...[원문불량;p.194] 239

Fig. 180. Variation of [NO₃⁻] and [N₂H₄] against time, [Cu⁺]...[원문불량;p.194] 239

Fig. 181. Variation of [NO₃⁻] and [N₂H₄] against time, [Cu⁺]=5X...[원문불량;p.195] 240

Fig. 182. Variation of sulphate ion concentration after precipitation by... 242

Fig. 183. Size distribution of BaSO₄ , (a) 5... 243

Fig. 184. Size distribution of SrSO₄ , (a) 5... 243

Fig. 185. Conceptual design of the laboratory... 245

Fig. 186. Filter support plate (left) and filter... 245

Fig. 187. Filtering bleb for tests, (a) PP900D, (b) PP1800D, (c)... 246

Fig. 188. Variation of [N₂H₄] against time at 70℃, [Cu⁺]... 247

Fig. 189. Remaining portion of N₂H₄ and H₂SO₄ against the absorbed...[원문불량;p.203] 248

Fig. 190. Remaining portion of N₂H₄ and H₂SO₄...[원문불량;p.204] 249

Fig. 191. Profiles of chemical reagents in Fe₃O₄ dissolution w/ N₂H₄ &... 254

Fig. 192. Profiles of chemical reagents in Fe₃O₄ dissolution w/... 254

Fig. 193. Concentration profiles of Fe²⁺ and Fe³⁺ in oxide and solution for HyBRID model... 256

Fig. 194. Concentration profiles of Fe²⁺ and Fe³⁺ in oxide and solution for HyBRID model 256

Fig. 195. Composition triangle of Fe₃O₄ , Fe³⁺ , Fe²⁺ after 6hr of the... 257

Fig. 196. Composition triangle of Fe₃O₄ , Fe³⁺ , Fe²⁺ after 6hr of the... 258

Fig. 197. Profiles of chemical reagents in NiFe₂O₄ dissolution w/ N₂H₄ &... 259

Fig. 198. Comparison of the change of Gibbs free energy of formation... 261

Fig. 199. ORP and pH change(upper) during the BaSO₄... 263

Fig. 200. Comparison of total waste for various... 269

Fig. 201. Comparison of ion-exchange resin for various... 269

Fig. 202 Design concept of bench-scale waste treatment system 271

Fig. 203. P&I diagram of bench-scale waste treatment system 272

Fig. 204. Schematic diagram of solution injection and mixing... 273

Fig. 205. Photograph of bench-scale waste treatment... 273

Fig. 206. Lab-scale candle filtration system 274

Fig. 207. Flow rate and treated water volume vs. time curves 275

Fig. 208. A model picture of candle cake (a) and BaSO₄... 276

Fig. 209. Operation procedure of candle filtration system 277

Fig. 210. Test Results for the beach-scale filtration... 277

Fig. 211. Double plots of [N₂H₄] and removed portion of N₂H₄...[원문불량;p.233] 278

Fig. 212. Double plots of N₂H₄ and removed portion of...[원문불량;p.234] 279

Fig. 213. Double plots of N₂H₄ and removed portion of...[원문불량;p.235] 280

Fig. 214. Sulphate concentration as a function of...[원문불량;p.236] 281

Fig. 215. SEM images of BaSO₄ particles according to the amount of... 283

Fig. 216. The photograph of Taylor reactor 285

Fig. 217. SEM image of BaSO₄ particles synthesized by batch-type(a)... 286

Fig. 218. Particle size distribution of BaSO₄ particles... 287

Fig. 219. The morphology of BaSO₄ particles according to the reaction... 288

Fig. 220. The morphology of BaSO₄ particles according to the injection flow... 289

Fig. 221. The morphology of BaSO₄ particles according to rotation speed 290

Fig. 222. The oxide of specimen at each stage 293

Fig. 223. Comparison of decontamination between HyBRID and CORD 294

Fig. 224. Image and schematic of specimen for decontamination... 295

Fig. 225. P&I diagram of chemical decontamination system 296

Fig. 226. Effective dose and decontamination factor of 1 cm specimen 297

Fig. 227. Specific activity of radioisotopes of 1 cm specimen 298

Fig. 228. Components of decontamination foam 302

Fig. 229. Variation of foam volume in 0.01, 0.1 and 1% SDS and Triton... 303

Fig. 230. Variation of foam volume in 0.1 and 0.1% SDS and Triton... 304

Fig. 231. Variation of foam volume in 0.1%... 304

Fig. 232. Variation of foam volume and liquid volume in 0.1% M440N,... 305

Fig. 233. Variation of foam volume and liquid volume in 0.1% M440N without... 306

Fig. 234. Variation of foam volume and liquid volume in foam of 0.1... 306

Fig. 235. TEM images of silica seed nanoparticles[원문불량;p.263] 308

Fig. 236. SEM images of monodispersive silica nanoparticles synthesized...[원문불량;p.264] 309

Fig. 237. SEM images of monodispersive silica nanoparticles...[원문불량;p.265] 310

Fig. 238. Representative SEM and TEM images of monodispersive core-shell... 311

Fig. 239. SEM images of monodispersive core-shell silica...[원문불량;p.267] 312

Fig. 240. TEM images of monodispersive core-shell silica...[원문불량;p.268] 313

Fig. 241. Representative SEM and TEM images of... 314

Fig. 242. XRD patterns of mesoporous silica... 314

Fig. 243. N₂ sorption isotherms and their corresponding pore size distribution... 315

Fig. 244. SEM and TEM images of mesoporous silica nanoparticles...[원문불량;p.271] 316

Fig. 245. XRD patterns of mesoporous silica nanoparticles... 317

Fig. 246. Variation of foam volume and liquid volume in foam of various... 318

Fig. 247. Variation of foam volume and liquid volume in foam of various M-5... 318

Fig. 248. (a) Variation of liquid volume in 1 % M440N with 1% M-5,... 319

Fig. 249. Variation of liquid volume in 1 % M440N with 1 % KAERI 1 (100... 320

Fig. 250. Comparison of foam stability of CEA and KAERI 321

Fig. 251. Mechanisms of stabilization of colloidal particles 322

Fig. 252. A mimetic diagram of interaction energies between... 323

Fig. 253. Factors affecting to interaction between... 324

Fig. 254. Zeta potential for the effect of pH (pH=2, 4, 6, and 10... 325

Fig. 255. TURBISCAN™ results with of 1 wt.% M-5 fumed silica (a) pH 2,... 326

Fig. 256. TURBISCAN™ Stability Kinetics and Index for the effect... 326

Fig. 257. Zeta potential for the effect of NaCl (0,... 327

Fig. 258. Size distribution by the effect of NaCl concentration (0, 0.1, and 1... 327

Fig. 259. TEM images of mesoporous core-shell silica NPs with various... 328

Fig. 260. SEM and TEM images of mesoporous hollow capsules with various... 329

Fig. 261. TEM images of mesoporous silica NPs synthesized by varying... 330

Fig. 262. EM images of (a) KAERI 1 nano-particles synthesized under 70 ℃... 331

Fig. 263. N₂ sorption isotherms of the calcined mesoporous silica NPs 332

Fig. 264. XRD patterns of the calcined KAERI-1, 2, and 3 332

Fig. 265. TEM images of mesoporous silica NPs synthesized 333

Fig. 266. N₂ sorption isotherms of the calcined mesoporous silica NPs 333

Fig. 267. XRD patterns of the calcined mesoporous silica NPs 334

Fig. 268. SEM images of the silica NPs with various sizes synthesized using... 334

Fig. 269. Schematic illustration for the synthesis of... 335

Fig. 270. FT-IR analysis (left) of Cn-SiO₂ NPs (right) synthesized using Cn-alkoxy silane...[이미지참조] 336

Fig. 271. Representative zeta potential distribution curve of C₈-SiO₂ NPs (1.0 %) 337

Fig. 272. Surface property of (a) SiO₂ NPs (0 – 1.0 %) and (b) Cn-SiO₂ NPs...[이미지참조] 337

Fig. 273. Foam stability and liquid volume in the foam... 338

Fig. 274. Principles of film thickness measurement using... 339

Fig. 275. Measured film thickness after 1 min from its formulation 339

Fig. 276. Observation of film thickness according to different type of ingredients 340

Fig. 277. Dynamic foam analysis without nanoparticles 341

Fig. 278. Dynamic foam analysis with nanoparticles (Black dots on the foam... 341

Fig. 279. The process of decontamination foam... 342

Fig. 280. (a) Foam volume and (b) liquid fraction of 1 % EM 100 containing various... 342

Fig. 281. (a) Foam volume and (b) liquid fraction of 0.1 % EM 100 containing various... 343

Fig. 282. Viscosity dependence on the concentration... 344

Fig. 283. Relationship between viscosity and the half-life of liquid... 344

Fig. 284. Dynamic surface tension without... 345

Fig. 285. Dynamic surface tension with 1... 345

Fig. 286 Variation of liquid fraction in foam of 1 %... 346

Fig. 287 Variation of liquid fraction of 1% EM100... 347

Fig. 288. Variation of liquid fraction of 1 % EM-100... 348

Fig. 289. Decontamination performance test of the nanopartile complx foam... 349

Fig. 290. Decontamination performance test of the foam containing... 350

Fig. 291. (a) TEM image and (b) TGA analysis before and after solvent...[원문불량;p.307] 352

Fig. 292. Liquid volume in foam of complex-fluid containing...[원문불량;p.308] 353

Fig. 293. Comparison of foam stability with index... 355

Fig. 294. Image analysis of complex-fluid containing solvent...[원문불량;p.311] 356

Fig. 295. (a) Bubble count, and (b) mean...[원문불량;p.312] 357

Fig. 296. Distribution of particle size for solvent extracted... 358

Fig. 297. Foam height of complex-fluid containing mesoporous...[원문불량;p.314] 359

Fig. 298. Liquid volume in foam of complex-fluid containing... 360

Fig. 299. Conceptual diagram of bench-scale generation... 361

Fig. 300. Bench-scale generation and stability-evaluation... 362

Fig. 301. Foam generation modules 362

Fig. 302 Generation of complex fluid using bench-scale generation... 363

Fig. 303. Comparison of foam volume with and without nanoparticles in 1%... 364

Fig. 304. Image of foam volume in 1% EM 100 at pH 2 using bench-scale...[원문불량;p.319] 364

Fig. 305. Adsorption and condensation of silica... 367

Fig. 306. Schematics for surface modification of silica... 368

Fig. 307. Position of nanoparticles with different contact angle in the foam... 370

Fig. 308. Schematics of anti-disproportionation mechanism in... 371

Fig. 309. Basic Composition of foam 372

Fig. 310. Photographs of specimen carbon steel corrosion test (A)... 374

Fig. 311. Dissolution test of carbon steel in HNO₃... 375

Fig. 312. Dissolution test of carbon steel in H₂SO₄... 375

Fig. 313. Dissolution test of carbon steel in H₃PO₄... 376

Fig. 314. Dissolution test of Inconel-600 in HNO₃... 377

Fig. 315. Dissolution Test of Stainless Steel(SS) 304 in... 378

Fig. 316. SEM photographs of stainless steel 304 coupon after... 379

Fig. 317. Photographs of copper corrosion test (A) Cu-... 380

Fig. 318. Dissolution test of copper in HNO₃ solution 380

Fig. 319. Dissolution test of copper in H₃PO₄ solution 381

Fig. 320. Dissolution test of Lead in HCOOH solution 382

Fig. 321. Dissolution test of Lead in HNO₃ solution 382

Fig. 322. Results of 1st and 2nd... 384

Fig. 323. Relationship between liquid...[원문불량;p.339] 384

Fig. 324. Results of decontamination tests of corroded... 386

Fig. 325. Photographs of Dry oven and rack component 386

Fig. 326. Decontamination test process of dry oven component rack with... 387

Fig. 327. Decontamination test result of dry oven... 387

Fig. 328. Decontamination test result of dry oven component rack...[원문불량;p.343] 388

Fig. 329. Decontamination factors of test result of dry oven... 389

Fig. 330. Silane coupling agents with various 391

Fig. 331. TEM images of KAERI-1 and mesoporous silica NPs... 392

Fig. 332. TGA analysis of K-1, N, N2, N3 393

Fig. 333. Pore size distribution of KAERI-1, KAERI-N,... 394

Fig. 334. Sorption isotherms of Co adsorbed onto K-N, K-N2... 396

Fig. 335. Effect of surfactant on the sorption capacity of Co 397

Fig. 336. Variation of foam volume in foam 398

Fig. 337. Variation of liquid volume in foam 399

Fig. 338. Sorption isotherms of Co adsorbed onto KAERI-1, AMP,... 400

Fig. 339. Effect of surfactant on the sorption capacity of... 401

Fig. 340. Removal ratio of Cs adsorbed onto AMP at... 402

Fig. 341. Removal ratio of Co adsorbed onto AMP... 404

Fig. 342. Variation of foam volume and liquid volume... 405

Fig. 343. Variation of foam volume and liquid... 406

Fig. 344. Variation of foam volume and liquid volume in... 407

Fig. 345. Position of nanoparticles with different contact angle... 408

Fig. 346. Schematic diagram for surface modification of silica... 409

Fig. 347. Content and contact angle of SiOH (%) in...[원문불량;p.365] 410

Fig. 348. Turbiscan stability kinetics and index for the... 411

Fig. 349. Foam volume containing silica... 412

Fig. 350. Relationship between the foam... 412

Fig. 351. Decontamination performance test of decontamination foam... 413

Fig. 352. Foam stability in the foam of... 415

Fig. 353. Foam stability of various... 415

Fig. 354. Foam stability of EM-100 and TBS... 416

Fig. 355. Foam stability of EM-100 and TBS... 416

Fig. 356. Foam stability of EM-100 and TBS... 417

Fig. 357. Redox stability between Ce(IV) and... 418

Fig. 358. Foam stability in the foam of various nanoparticles 419

Fig. 359. Foam stability in the foam of functionalized silica... 420

Fig. 360. Picture of the glass column and decontaminated specimens... 421

Fig. 361. Decontamination performance test of decontamination foam... 422

Fig. 362. Particle size of 30R50 with different concentration of AlCl₃₋ 423

Fig. 363. The system of nanoparticle separation and new concept at... 424

Fig. 364. Foam stability of reused nano particle-based... 424

Fig. 365. Foam stability of separated silica nanoparticle 425

Fig. 366. SEM images of bare and used SiO₂ after silica... 426

Fig. 367. TGA analysis of separated silica nanoparticle 426

Fig. 368. The effect of Fe³⁺ ion on the measurement of Ce(IV)... 428

Fig. 369. The effect of TBS surfactant on the measurement... 428

Fig. 370. The effect of acid medium on the measurement of Ce(IV) conc.... 428

Fig. 371. The effect of TBS surfactant on the measurement of... 428

Fig. 372. Ce(III) conversion rate on the variation of the mixed gas... 429

Fig. 373. The effect of TBS surfactant on the Ce(III) conversion... 429

Fig. 374. The effect of TBS surfactant on the Ce(III) conversion rate at a mixed... 430

Fig. 375. Time for specific Ce(III) conversion rate on the variation of... 430

Fig. 376. Transmittance of separated solution of... 431

Fig. 377. Transmittance of separated solution according... 431

Fig. 378. The separation rate of silica nanoaparticle by time and... 432

Fig. 379. The particle size analysis and concentration of silica... 432

Fig. 380. Schematic diagram of static foam generator[원문불량;p.388] 433

Fig. 381. Schematic diagram of advanced foam generator[원문불량;p.389] 434

Fig. 382. P&ID of decontamination equipment of complex-fluid... 437

Fig. 383. Engineering drawing of decontamination equipment of... 437

Fig. 384. Schematic diagram of... 438

Fig. 385. Engineering drawing of bench-scale washing and... 444

Fig. 386. P&ID of decontamination equipment of bench-scale... 444

Fig. 387. Picture of bench-scale washing and collecting... 445

Fig. 388. Comparison of solid-liquid separation technology 446

Fig. 389. Principles of candle filtration 446

Fig. 390. P&ID for candle filter system 447

Fig. 391. Engineering drawing of filter internals 447

Fig. 392. (a) Bench-scale filtration... 448

Fig. 393. Change in filtration throughput for foaming agents... 449

Fig. 394. Change in solid-liquid separation percentage for... 449

Fig. 395. Filter cake treated by candle filtration system 450

Fig. 396. Weight loss change with decontamination time...[원문불량;p.408] 453

Fig. 397. Photographic surface change with decontamination time 454

Fig. 398. SEM analysis result for FeCr₂O₄ specimen 455

Fig. 399. Comparisons of foams generated in (a) static... 458

Fig. 400. Comparisons of foams generated by (a) Full cone nozzle and...[원문불량;p.414] 459

Fig. 401. Conductivity with flow and nozzle type change[원문불량;p.414] 459

Fig. 402. SEM analysis result for corroded specimen... 460

Fig. 403 Foam decontamination system for a large scale tank 462

Fig. 404. Foam generation in top-down spraying system 463

Fig. 405. Progress of foam generation in bottom-up foam generator 464

Fig. 406. Progress of foam generation in top-down spraying foam... 465

Fig. 407. Effect of washing number for SiO₂ recovery(%) using new... 467

Fig. 408. Effect of washing number for SiO₂ recovery(%) using recycling... 467

Fig. 409. (a) Bench-scale filtration system (b) Candle filter module 469

Fig. 410. Change in filtration throughput for foaming agents... 470

Fig. 411. Change in turbidity and solid-liquid separation... 470

Fig. 412. Photographic foam change in glass column with surface... 473

Fig. 413. Photographic surface change with various foam decontamination 474

Fig. 414. Removal efficiency of Co using the foam... 475

Fig. 415. Removal efficiency of Cs using the foam... 475

Fig. 416. Photographic surface change with the time of foam... 477

Fig. 417. Removal efficiency of Cs using the foam... 478

Fig. 418. Removal efficiency of Co using the foam... 478

Fig. 419. Design drawing of decontamination system for... 482

Fig. 420. Decontamination system for... 482

Fig. 421. Cobalt radionuclide removal % for KAERI... 483

Fig. 422. Radioactivity removal % for KAERI and CEA... 484

Fig. 423. Cobalt radionuclide removal % by ultrasonic... 485

Fig. 424. Radioactivity removal % by ultrasonic cleaning for... 485

Fig. 425. Photographic surface change with decontamination time for KAERI... 486

Fig. 426. Schematic diagram for foam spraying decontamination system 490

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기